ترغب بنشر مسار تعليمي؟ اضغط هنا

It has been predicted and experimentally demonstrated that by injecting squeezed light into an optomechanical device it is possible to enhance the precision of a position measurement. Here, we present a fundamentally different approach where the sque ezing is created directly inside the cavity by a nonlinear medium. Counterintuitively, the enhancement of the signal to noise ratio works by de-amplifying precisely the quadrature that is sensitive to the mechanical motion without losing quantum information. This enhancement works for systems with a weak optomechanical coupling and/or strong mechanical damping. This could allow for larger mechanical bandwidth of quantum limited detectors based on optomechanical devices. Our approach can be straightforwardly extended to Quantum Non Demolition (QND) qubit detection.
A fiber laser is stabilized using a Calcium Fluoride (CaF2) whispering-gallery-mode resonator. It is set up using a semiconductor optical amplifier as a gain medium. The resonator is critically coupled through prisms, and used as a filtering element to suppress the laser linewidth. Using the self-heterodyne beat technique the linewidth is determined to be 13 kHz. This implies an enhancement factor of 10^3 with respect to the passive cavity linewidth. The three-cornered hat method shows a stability of 10^(-11) after 10 mu s.
We demonstrate a narrow line, fiber loop laser using Erbium-doped fiber as the gain material, stabilized by using a microsphere as a transmissive frequency selective element. Stable lasing with a linewidth of 170 kHz is observed, limited by the exper imental spectral resolution. A linear increase in output power and a red-shift of the lasing mode were also observed with increasing pump power. Its potential application is also discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا