ترغب بنشر مسار تعليمي؟ اضغط هنا

124 - S. Aoki , Y. Aoki , H. Fukaya 2021
The chiral susceptibility, or the first derivative of the chiral condensate with respect to the quark mass, is often used as a probe for the QCD phase transition since the chiral condensate is an order parameter of $SU(2)_L times SU(2)_R$ symmetry br eaking. However, the chiral condensate also breaks the axial $U(1)$ symmetry, which is usually not paid attention to as it is already broken by anomaly. We investigate the susceptibilities in the scalar and pseudoscalar channels in order to quantify how much the axial $U(1)$ anomaly contributes to the chiral phase transition. Employing a chirally symmetric lattice Dirac operator, and its eigenmode decomposition, we separate the axial $U(1)$ breaking effects from others. Our result in two-flavor QCD indicates that the chiral susceptibility is dominated by the axial $U(1)$ anomaly at temperatures $Tgtrsim 190$ MeV after the quadratically divergent constant is subtracted.
76 - S. Aoki , G. Cossu , H. Fukaya 2017
We compute the topological susceptibility $chi_t$ of lattice QCD with $2+1$ dynamical quark flavors described by the Mobius domain wall fermion. Violation of chiral symmetry as measured by the residual mass is kept at $sim$1 MeV or smaller. We measur e the fluctuation of the topological charge density in a `slab sub-volume of the simulated lattice using the method proposed by Bietenholz {it et al.} The quark mass dependence of $chi_t$ is consistent with the prediction of chiral perturbation theory, from which the chiral condensate is extracted as $Sigma^{overline{rm MS}} (mbox{2GeV}) = [274(13)(29)mbox{MeV}]^3$, where the first error is statistical and the second one is systematic. Combining the results for the pion mass $M_pi$ and decay constant $F_pi$, we obtain $chi_t = 0.229(03)(13)M_pi^2F_pi^2$ at the physical point.
We report on our study of the D meson semileptonic decays in 2+1 flavor lattice QCD. Gauge ensembles are generated at three lattice cutoffs up to 4.5 GeV and with pion masses as low as 300 MeV. We employ the Moebius domain-wall fermion action for bot h light and charm quarks. We report our preliminary results for the vector and scalar form factors and discuss their dependence on the momentum transfer, quark masses and lattice spacing.
We calculate the spectral function of the QCD Dirac operator using the four-dimensional effective operator constructed from the Mobius domain-wall implementation. We utilize the eigenvalue filtering technique combined with the stochastic estimate of the mode number. The spectrum in the entire eigenvalue range is obtained with a single set of measurements. Results on 2+1-flavor ensembles with Mobius domain-wall sea quarks at lattice spacing ~ 0.08 fm are shown.
We consider how to extract the pion form factors in the epsilon regime. Using the correlators with non-zero momenta and taking appropriate ratios of them, we eliminate the dominant finite volume effect from the zero-momentum pion mode. Our preliminar y lattice result for the pion charge radius is consistent with the experiment.
We report on a lattice simulation result for four-dimensional {cal N}=1 SU(2) super Yang-Mills theory with the dynamical overlap gluino. We study the spectrum of the overlap Dirac operator at three different gluino masses m=0.2, 0.1 and 0.05 with the Iwasaki action on a 8^3 times 16 lattice. We find that the lowest eigenvalue distributions are in good agreement with the prediction from the random matrix theory. Moreover the mass dependence of the condensate is almost constant, which gives a clean chiral limit. Our results for the gluino condensate in the chiral limit is < bar{psi} psi > r_0^3 = 0.63(12), where r_0 is the Sommer scale.
A simulation of lattice QCD at (or even below) the physical pion mass is feasible on a small lattice size of sim 2 fm. The results are, however, subject to large finite volume effects. In order to precisely understand the chiral behavior in a finite volume, we develop a new computational scheme to interpolate the conventional epsilon and p regimes within chiral perturbation theory. In this new scheme, we calculate the two-point function in the pseudoscalar channel, which is described by a set of Bessel functions in an infra-red finite way as in the epsilon regime, while chiral logarithmic effects are kept manifest as in the p regime. The new ChPT formula is compared to our 2+1- flavor lattice QCD data near the physical up and down quark mass, mud sim 3 MeV on an L sim 1.8 fm lattice. We extract the pion mass = 99(4) MeV, from which we attempt a chiral interpolation of the observables to the physical point.
66 - E. Shintani , S. Aoki , H. Fukaya 2008
We present a lattice calculation of $L_{10}$, one of the low energy constants in Chiral Perturbation Theory, and the charged-neutral pion squared mass splitting, using dynamical overlap fermion. Exact chiral symmetry of the overlap fermion allows us to reliably extract these quantities from the difference of the vacuum polarization functions for vector and axial-vector currents. In the context of the technicolor models, these two quantities are read as the $S$-parameter and the pseudo-Nambu-Goldstone boson mass respectively, and play an important role in discriminating the models from others. This calculation can serve as a feasibility study of the lattice techniques for more general technicolor gauge theories.
We consider chiral perturbation theory in a finite volume and in a mixed regime of quark masses. We take N_l light quarks near the chiral limit, in the so-called epsilon-regime, while the remaining N_h quarks are heavier and in the standard p-regime. We compute in this new mixed regime the finite-size scaling of the light meson correlators in the scalar, pseudoscalar, vector and axial vector channels.Using the replica method, we easily extend our results to the partially quenched theory. With the help of our results, lattice QCD simulations with 2+1 flavors can safely investigate pion physics with very light up and down quark masses even in the region where the pions correlation length overcomes the size of the space-time lattice.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا