ترغب بنشر مسار تعليمي؟ اضغط هنا

239 - C. Stehle , H. Bender , F. Jessen 2010
Hybrid quantum systems made of cold atoms near nanostructured surfaces are expected to open up new opportunities for the construction of quantum sensors and for quantum information. For the design of such tailored quantum systems the interaction of a lkali atoms with dielectric and metallic surfaces is crucial and required to be understood in detail. Here, we present real-time measurements of the adsorption and desorption of Rubidium atoms on gold nanofilms. Surface plasmon polaritons (SPP) are excited at the gold surface and detected in a phase sensitive way. From the temporal change of the SPP phase the Rubidium coverage of the gold film is deduced with a sensitivity of better than 0.3 % of a monolayer. By comparing the experimental data with a Langmuir type adsorption model we obtain the thermal desorption rate and the sticking probability. In addition, also laser-induced desorption is observed and quantified.
182 - H. Bender , C. Stehle , S. Slama 2010
Scattering of light at a distribution of scatterers is an intrinsically cooperative process, which means that the scattering rate and the angular distribution of the scattered light are essentially governed by bulk properties of the distribution, suc h as its size, shape, and density, although local disorder and density fluctuations may have an important impact on the cooperativity. Via measurements of the radiation pressure exerted by a far-detuned laser beam on a very small and dense cloud of ultracold atoms, we are able to identify the respective roles of superradiant acceleration of the scattering rate and of Mie scattering in the cooperative process. They lead respectively to a suppression or an enhancement of the radiation pressure. We observe a maximum in the radiation pressure as a function of the induced phase shift, marking the borderline of the validity of the Rayleigh-Debye-Gans approximation from a regime, where Mie scattering is more complex. Our observations thus help to clarify the intricate relationship between Rayleigh scattering of light at a coarse-grained ensemble of individual scatterers and Mie scattering at the bulk density distribution.
73 - S. Bux , E. Lucioni , H. Bender 2010
We have studied the interplay between disorder and cooperative scattering for single scattering limit in the presence of a driving laser. Analytical results have been derived and we have observed cooperative scattering effects in a variety of experim ents, ranging from thermal atoms in an optical dipole trap, atoms released from a dark MOT and atoms in a BEC, consistent with our theoretical predictions.
161 - A. Gunther , H. Bender , A. Stibor 2008
We experimentally demonstrate optical spectroscopy of magnetically trapped atoms on an atom chip. High resolution optical spectra of individual trapped clouds are recorded within a few hundred milliseconds. Detection sensitivities close to the single atom level are obtained by photoionization of the excited atoms and subsequent ion detection with a channel electron multiplier. Temperature and decay rates of the trapped atomic cloud can be monitored in real time for several seconds with only little detection losses. The spectrometer can be used for investigations of ultracold atomic mixtures and for the development of interferometric quantum sensors on atom chips.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا