ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of cooperative Mie scattering from an ultracold atomic cloud

230   0   0.0 ( 0 )
 نشر من قبل Philippe Courteille
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Scattering of light at a distribution of scatterers is an intrinsically cooperative process, which means that the scattering rate and the angular distribution of the scattered light are essentially governed by bulk properties of the distribution, such as its size, shape, and density, although local disorder and density fluctuations may have an important impact on the cooperativity. Via measurements of the radiation pressure exerted by a far-detuned laser beam on a very small and dense cloud of ultracold atoms, we are able to identify the respective roles of superradiant acceleration of the scattering rate and of Mie scattering in the cooperative process. They lead respectively to a suppression or an enhancement of the radiation pressure. We observe a maximum in the radiation pressure as a function of the induced phase shift, marking the borderline of the validity of the Rayleigh-Debye-Gans approximation from a regime, where Mie scattering is more complex. Our observations thus help to clarify the intricate relationship between Rayleigh scattering of light at a coarse-grained ensemble of individual scatterers and Mie scattering at the bulk density distribution.



قيم البحث

اقرأ أيضاً

159 - J. R. Ott , M. Wubs , P. Lodahl 2013
We investigate cooperative fluorescence in a dilute cloud of strongly driven two-level emitters. Starting from the Heisenberg equations of motion, we compute the first-order scattering corrections to the saturation of the excited-state population and to the resonance-fluorescence spectrum, which both require going beyond the state-of-the-art linear-optics approach to describe collective phenomena. A dipole blockade is observed due to long range dipole-dipole coupling that vanishes at stronger driving fields. Furthermore, we compute the inelastic component of the light scattered by a cloud of many atoms and find that the Mollow triplet is affected by cooperativity. In a lobe around the forward direction, the inelastic Mollow triplet develops a spectral asymmetry, observable under experimental conditions.
We report investigation of near-resonance light scattering from a cold and dense atomic gas of $^{87}$Rb atoms. Measurements are made for probe frequencies tuned near the $F=2to F=3$ nearly closed hyperfine transition, with particular attention paid to the dependence of the scattered light intensity on detuning from resonance, the number of atoms in the sample, and atomic sample size. We find that, over a wide range of experimental variables, the optical depth of the atomic sample serves as an effective single scaling parameter which describes well all the experimental data.
Femtochemistry techniques have been instrumental in accessing the short time scales necessary to probe transient intermediates in chemical reactions. Here we take the contrasting approach of prolonging the lifetime of an intermediate by preparing rea ctant molecules in their lowest ro-vibronic quantum state at ultralow temperatures, thereby drastically reducing the number of exit channels accessible upon their mutual collision. Using ionization spectroscopy and velocity-map imaging of a trapped gas of potassium-rubidium molecules at a temperature of 500~nK, we directly observe reactants, intermediates, and products of the reaction $^{40}$K$^{87}$Rb + $^{40}$K$^{87}$Rb $rightarrow$ K$_2$Rb$^*_2$ $rightarrow$ K$_2$ + Rb$_2$. Beyond observation of a long-lived energy-rich intermediate complex, this technique opens the door to further studies of quantum-state resolved reaction dynamics in the ultracold regime.
We report on the observation and coherent excitation of atoms on the narrow inner-shell orbital transition, connecting the erbium ground state $[mathrm{Xe}] 4f^{12} (^3text{H}_6)6s^{2}$ to the excited state $[mathrm{Xe}] 4f^{11}(^4text{I}_{15/2})^05d (^5text{D}_{3/2}) 6s^{2} (15/2,3/2)^0_7$. This transition corresponds to a wavelength of 1299 nm and is optically closed. We perform high-resolution spectroscopy to extract the $g_J$-factor of the $1299$-nm state and to determine the frequency shift for four bosonic isotopes. We further demonstrate coherent control of the atomic state and extract a lifetime of 178(19) ms which corresponds to a linewidth of 0.9(1) Hz. The experimental findings are in good agreement with our semi-empirical model. In addition, we present theoretical calculations of the atomic polarizability, revealing several different magic-wavelength conditions. Finally, we make use of the vectorial polarizability and confirm a possible magic wavelength at 532 nm.
Currently, the most accurate and stable clocks use optical interrogation of either a single ion or an ensemble of neutral atoms confined in an optical lattice. Here, we demonstrate a new optical clock system based on an array of individually trapped neutral atoms with single-atom readout, merging many of the benefits of ion and lattice clocks as well as creating a bridge to recently developed techniques in quantum simulation and computing with neutral atoms. We evaluate single-site resolved frequency shifts and short-term stability via self-comparison. Atom-by-atom feedback control enables direct experimental estimation of laser noise contributions. Results agree well with an ab initio Monte Carlo simulation that incorporates finite temperature, projective read-out, laser noise, and feedback dynamics. Our approach, based on a tweezer array, also suppresses interaction shifts while retaining a short dead time, all in a comparatively simple experimental setup suited for transportable operation. These results establish the foundations for a third optical clock platform and provide a novel starting point for entanglement-enhanced metrology, quantum clock networks, and applications in quantum computing and communication with individual neutral atoms that require optical clock state control.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا