ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin qubits in quantum dots define an attractive platform for scalable quantum information because of their compatibility with semiconductor manufacturing, their long coherence times, and the ability to operate at temperatures exceeding one Kelvin. Q ubit logic can be implemented by pulsing the exchange interaction or via driven rotations. Here, we show that these approaches can be combined to execute a multitude of native two-qubit gates in a single device, reducing the operation overhead to perform quantum algorithms. We demonstrate, at a temperature above one Kelvin, single-qubit rotations together with the two-qubit gates CROT, CPHASE and SWAP. Furthermore we realize adiabatic, diabatic and composite sequences to optimize the qubit control fidelity and the gate time. We find two-qubit gates that can be executed within 67 ns and by theoretically analyzing the experimental noise sources we predict fidelities exceeding 99%. This promises fault-tolerant operation using quantum hardware that can be embedded with classical electronics for quantum integrated circuits.
Quantum computation requires many qubits that can be coherently controlled and coupled to each other. Qubits that are defined using lithographic techniques are often argued to be promising platforms for scalability, since they can be implemented usin g semiconductor fabrication technology. However, leading solid-state approaches function only at temperatures below 100 mK, where cooling power is extremely limited, and this severely impacts the perspective for practical quantum computation. Recent works on spins in silicon have shown steps towards a platform that can be operated at higher temperatures by demonstrating long spin lifetimes, gate-based spin readout, and coherent single-spin control, but the crucial two-qubit logic gate has been missing. Here we demonstrate that silicon quantum dots can have sufficient thermal robustness to enable the execution of a universal gate set above one Kelvin. We obtain single-qubit control via electron-spin-resonance (ESR) and readout using Pauli spin blockade. We show individual coherent control of two qubits and measure single-qubit fidelities up to 99.3 %. We demonstrate tunability of the exchange interaction between the two spins from 0.5 up to 18 MHz and use this to execute coherent two-qubit controlled rotations (CROT). The demonstration of `hot and universal quantum logic in a semiconductor platform paves the way for quantum integrated circuits hosting the quantum hardware and their control circuitry all on the same chip, providing a scalable approach towards practical quantum information.
Electrons and holes confined in quantum dots define an excellent building block for quantum emergence, simulation, and computation. In order for quantum electronics to become practical, large numbers of quantum dots will be required, necessitating th e fabrication of scaled structures such as linear and 2D arrays. Group IV semiconductors contain stable isotopes with zero nuclear spin and can thereby serve as excellent host for spins with long quantum coherence. Here we demonstrate group IV quantum dot arrays in silicon metal-oxide-semiconductor (SiMOS), strained silicon (Si/SiGe) and strained germanium (Ge/SiGe). We fabricate using a multi-layer technique to achieve tightly confined quantum dots and compare integration processes. While SiMOS can benefit from a larger temperature budget and Ge/SiGe can make ohmic contact to metals, the overlapping gate structure to define the quantum dots can be based on a nearly identical integration. We realize charge sensing in each platform, for the first time in Ge/SiGe, and demonstrate fully functional linear and two-dimensional arrays where all quantum dots can be depleted to the last charge state. In Si/SiGe, we tune a quintuple quantum dot using the N+1 method to simultaneously reach the few electron regime for each quantum dot. We compare capacitive cross talk and find it to be the smallest in SiMOS, relevant for the tuning of quantum dot arrays. These results constitute an excellent base for quantum computation with quantum dots and provide opportunities for each platform to be integrated with standard semiconductor manufacturing.
Extremely long coherence times, excellent single-qubit gate fidelities and two-qubit logic have been demonstrated with silicon metal-oxide-semiconductor spin qubits, making it one of the leading platforms for quantum information processing. Despite t his, a long-standing challenge in this system has been the demonstration of tunable tunnel coupling between single electrons. Here we overcome this hurdle with gate-defined quantum dots and show couplings that can be tuned on and off for quantum operations. We use charge sensing to discriminate between the (2,0) and (1,1) charge states of a double quantum dot and show excellent charge sensitivity. We demonstrate tunable coupling up to 13 GHz, obtained by fitting charge polarization lines, and tunable tunnel rates down to below 1 Hz, deduced from the random telegraph signal. The demonstration of tunable coupling between single electrons in a silicon metal-oxide-semiconductor device provides significant scope for high-fidelity two-qubit logic toward quantum information processing with standard manufacturing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا