ترغب بنشر مسار تعليمي؟ اضغط هنا

A Weyl semimetal is a new type of topological quantum phase with intriguing physics near the Weyl nodes. Although the equilibrium state of Weyl semimetals has been investigated, the ultrafast dynamics near the Weyl node in the nonequilibrium state is still missing. Here by performing time and angle resolved photoemission spectroscopy on type-II Weyl semimetal MoTe$_2$, we reveal the dispersion of the unoccupied states and identify the Weyl node at 70 meV above E$_F$. Moreover, by tracking the ultrafast relaxation dynamics near the Weyl node upon photo-excitation with energy, momentum and temporal resolution, two intrinsic recovery timescales are observed, a fast one of 430 fs and a slow one of 4.1 ps, which are associated with hot electron cooling by optical phonon cascade emission and anharmonic decay of hot optical phonons respectively. The electron population shows a metallic response, and the two temperature model fitting of the transient electronic temperature gives an electron-phonon coupling constant of $lambdalangleOmega^2ranglesimeq32$ $textrm{meV}^2$. Our work provides important dynamic information for understanding the relaxation mechanism of a Weyl semimetal and for exploiting potential applications using ultrafast optical control.
In van der Waals heterostructures, the periodic potential from the Moire superlattice can be used as a control knob to modulate the electronic structure of the constituent materials. Here we present a nanoscale angle-resolved photoemission spectrosco py (Nano-ARPES) study of transferred graphene/h-BN heterostructures with two different stacking angles of 2.4{deg} and 4.3{deg} respectively. Our measurements reveal six replicas of graphene Dirac cones at the superlattice Brillouin zone (SBZ) centers. The size of the SBZ and its relative rotation angle to the graphene BZ are in good agreement with Moire superlattice period extracted from atomic force microscopy (AFM) measurements. Comparison to epitaxial graphene/h-BN with 0{deg} stacking angles suggests that the interaction between graphene and h-BN decreases with increasing stacking angle.
120 - Ke Deng , Guoliang Wan , Peng Deng 2016
Weyl semimetal is a new quantum state of matter [1-12] hosting the condensed matter physics counterpart of relativisticWeyl fermion [13] originally introduced in high energy physics. The Weyl semimetal realized in the TaAs class features multiple Fer mi arcs arising from topological surface states [10, 11, 14-16] and exhibits novel quantum phenomena, e.g., chiral anomaly induced negative mag-netoresistance [17-19] and possibly emergent supersymmetry [20]. Recently it was proposed theoretically that a new type (type-II) of Weyl fermion [21], which does not have counterpart in high energy physics due to the breaking of Lorentz invariance, can emerge as topologically-protected touching between electron and hole pockets. Here, we report direct spectroscopic evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe2 [22-24]. The topological surface states are confirmed by directly observing the surface states using bulk-and surface-sensitive angle-resolved photoemission spectroscopy (ARPES), and the quasi-particle interference (QPI) pattern between the two putative Fermi arcs in scanning tunneling microscopy (STM). Our work establishes MoTe2 as the first experimental realization of type-II Weyl semimetal, and opens up new opportunities for probing novel phenomena such as exotic magneto-transport [21] in type-II Weyl semimetals.
The interaction between magnetic impurities and the gapless surface state is of critical importance for realizing novel quantum phenomena and new functionalities in topological insulators. By combining angle-resolved photoemission spectroscopic exper iments with density functional theory calculations, we show that surface deposition of Cr atoms on Bi$_2$Se$_3$ does not lead to gap opening of the surface state at the Dirac point, indicating the absence of long-range out-of-plane ferromagnetism down to our measurement temperature of 15 K. This is in sharp contrast to bulk Cr doping, and the origin is attributed to different Cr occupation sites. These results highlight the importance of nanoscale configuration of doped magnetic impurities in determining the electronic and magnetic properties of topological insulators.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا