ﻻ يوجد ملخص باللغة العربية
The interaction between magnetic impurities and the gapless surface state is of critical importance for realizing novel quantum phenomena and new functionalities in topological insulators. By combining angle-resolved photoemission spectroscopic experiments with density functional theory calculations, we show that surface deposition of Cr atoms on Bi$_2$Se$_3$ does not lead to gap opening of the surface state at the Dirac point, indicating the absence of long-range out-of-plane ferromagnetism down to our measurement temperature of 15 K. This is in sharp contrast to bulk Cr doping, and the origin is attributed to different Cr occupation sites. These results highlight the importance of nanoscale configuration of doped magnetic impurities in determining the electronic and magnetic properties of topological insulators.
Momentum resolved photoemission spectroscopy indicates the instability of the Dirac surface state upon deposition of gold on the (0001) surface of the topological insulator Bi$_2$Se$_3$. Based on the structure model derived from extended x-ray absorp
Heavily electron-doped surfaces of Bi$_2$Se$_3$ have been studied by spin and angle resolved photoemission spectroscopy. Upon doping, electrons occupy a series of {bf k}-split pairs of states above the topological surface state. The {bf k}-splitting
Rubidium adsorption on the surface of the topological insulator Bi$_2$Se$_3$ is found to induce a strong downward band bending, leading to the appearance of a quantum-confined two dimensional electron gas states (2DEGs) in the conduction band. The 2D
Proximity-induced magnetic effects on the surface Dirac spectra of topological insulators are investigated by scanning tunneling spectroscopic (STS) studies of bilayer structures consisting of undoped Bi2Se3 thin films on top of Cr-doped Bi2Se3 layer
Despite extensive experimental and theoretical efforts, the important issue of the effects of surface magnetic impurities on the topological surface state of a topological insulator (TI) remains unresolved. We elucidate the effects of Cr impurities o