ترغب بنشر مسار تعليمي؟ اضغط هنا

Van der Waals heterostructures formed by assembling different two-dimensional atomic crystals into stacks can lead to many new phenomena and device functionalities. In particular, graphene/boron-nitride heterostructures have emerged as a very promisi ng system for band engineering of graphene. However, the intrinsic value and origin of the bandgap in such heterostructures remain unresolved. Here we report the observation of an intrinsic bandgap in epitaxial graphene/boron-nitride heterostructures with zero crystallographic alignment angle. Magneto-optical spectroscopy provides a direct probe of the Landau level transitions in this system and reveals a bandgap of ~ 38 meV (440 K). Moreover, the Landau level transitions are characterized by effective Fermi velocities with a critical dependence on specific transitions and magnetic field. These findings highlight the important role of many body interactions in determining the fundamental properties of graphene heterostructures.
88 - Guo Chen 2014
We aim to construct a spectral energy distribution (SED) for the emission from the dayside atmosphere of the hot Jupiter WASP-46b and to investigate its energy budget. We observed a secondary eclipse of WASP-46b simultaneously in the grizJHK bands us ing the GROND instrument on the MPG/ESO 2.2m telescope. Eclipse depths of the acquired light curves were derived to infer the brightness temperatures at multibands that cover the SED peak. We report the first detection of the thermal emission from the dayside of WASP-46b in the K band at 4.2-sigma level and tentative detections in the H (2.5-sigma) and J (2.3-sigma) bands, with flux ratios of 0.253 +0.063/-0.060%, 0.194 +/- 0.078%, and 0.129 +/- 0.055%, respectively. The derived brightness temperatures (2306 +177/-187K, 2462 +245/-302K, and 2453 +198/-258K, respectively) are consistent with an isothermal temperature profile of 2386K, which is significantly higher than the dayside-averaged equilibrium temperature, indicative of very poor heat redistribution efficiency. We also investigate the tentative detections in the gri bands and the 3-sigma upper limit in the z band, which might indicate the existence of reflective clouds if these tentative detections do not arise from systematics.
72 - Guo Chen 2014
(Abridged) WASP-5b is a highly irradiated dense hot Jupiter orbiting a G4V star every 1.6 days. We observed two secondary eclipses of WASP-5b in the J, H and K bands simultaneously. Thermal emission of WASP-5b is detected in the J and K bands. The re trieved planet-to-star flux ratios in the J and K bands are 0.168 +0.050/-0.052% and 0.269+/-0.062%, corresponding to brightness temperatures of 2996 +212/-261K and 2890 +246/-269K, respectively. No thermal emission is detected in the H band, with a 3-sigma upper limit of 0.166%, corresponding to a maximum temperature of 2779K. On the whole, our J, H, K results can be explained by a roughly isothermal temperature profile of ~2700K in the deep layers of the planetary dayside atmosphere that are probed at these wavelengths. Together with Spitzer observations, which probe higher layers that are found to be at ~1900K, a temperature inversion is ruled out in the range of pressures probed by the combined data set. While an oxygen-rich model is unable to explain all the data, a carbon-rich model provides a reasonable fit but violates energy balance.
353 - Ze-Guo Chen , Xu Ni , Ying Wu 2014
Artificial honeycomb lattices with Dirac cone dispersion provide a macroscopic platform to study the massless Dirac quasiparticles and their novel geometric phases. In this paper, a quadruple-degenerate state is achieved at the center of Brillouin zo ne (BZ) in a two-dimensional honeycomb lattice phononic crystal, which is a result of accidental degeneracy of two double-degenerate states. In the vicinity of the quadruple-degenerate state, the dispersion relation is linear. Such quadruple degeneracy is analyzed by rigorous representation theory of groups. Using method, a reduced Hamiltonian is obtained to describe the linear Dirac dispersion relations of such quadruple-degenerate state, which is well consistent with the simulation results. Near such accidental degeneracy, we observe some unique wave propagating properties, such as defect insensitive propagating character and Talbot effect.
194 - Guo Chen 2014
(Abridged) We observed one transit and one occultation of the hot Jupiter WASP-43b simultaneously in the grizJHK bands using the GROND instrument on the MPG/ESO 2.2-meter telescope. From the transit event, we have independently derived WASP-43s syste m parameters with high precision, and improved the period to be 0.81347437(13) days. No significant variation in transit depths is detected, with the largest deviations coming from the i, H, and K bands. Given the observational uncertainties, the broad-band transmission spectrum can be explained by either a flat featureless straight line that indicates thick clouds, synthetic spectra with absorption signatures of atomic Na/K or molecular TiO/VO that indicate cloud-free atmosphere, or a Rayleigh scattering profile that indicates high-altitude hazes. From the occultation event, we have detected planetary dayside thermal emission in the K-band with a flux ratio of 0.197 +/- 0.042%, which confirms previous detections obtained in the 2.09 micron narrow band and Ks-band. The K-band brightness temperature 1878 +108/-116 K favors an atmosphere with poor day- to night-side heat redistribution. We also have a marginal detection in the i-band (0.037 +0.023/-0.021%), which is either a false positive, a signature of non-blackbody radiation at this wavelength, or an indication of reflective hazes at high altitude.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا