ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground-based detection of the near-infrared emission from the dayside of WASP-5b

130   0   0.0 ( 0 )
 نشر من قبل Guo Chen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Guo Chen




اسأل ChatGPT حول البحث

(Abridged) WASP-5b is a highly irradiated dense hot Jupiter orbiting a G4V star every 1.6 days. We observed two secondary eclipses of WASP-5b in the J, H and K bands simultaneously. Thermal emission of WASP-5b is detected in the J and K bands. The retrieved planet-to-star flux ratios in the J and K bands are 0.168 +0.050/-0.052% and 0.269+/-0.062%, corresponding to brightness temperatures of 2996 +212/-261K and 2890 +246/-269K, respectively. No thermal emission is detected in the H band, with a 3-sigma upper limit of 0.166%, corresponding to a maximum temperature of 2779K. On the whole, our J, H, K results can be explained by a roughly isothermal temperature profile of ~2700K in the deep layers of the planetary dayside atmosphere that are probed at these wavelengths. Together with Spitzer observations, which probe higher layers that are found to be at ~1900K, a temperature inversion is ruled out in the range of pressures probed by the combined data set. While an oxygen-rich model is unable to explain all the data, a carbon-rich model provides a reasonable fit but violates energy balance.



قيم البحث

اقرأ أيضاً

Secondary eclipses are a powerful tool to measure directly the thermal emission from extrasolar planets, and to constrain their type and physical parameters. We started a project to obtain reliable broad-band measurements of the thermal emission of t ransiting exoplanets. Ground-based high-cadence near-infrared relative photometry was used to obtain sub-millimagnitude precision light curve of a secondary eclipse of WASP-4b -- a 1.12 M_J hot Jupiter on a 1.34 day orbit around G7V star. The data show a clear ~10-sigma detection of the planets thermal emission at 2.2 mu m. The calculated thermal emission corresponds to a fractional eclipse depth of 0.185^{+0.014}_{-0.013}%, with a related brightness temperature in Ks of T_B = 1995 pm 40 K, centered at T_C = 2455102.61162^{+0.00071}_{-0.00077} HJD. We could set a limit on the eccentricity of e cos omega=0.0027 pm 0.0018, compatible with a near-circular orbit. The calculated brightness temperature, as well as the specific models suggest a highly inefficient redistribution of heat from the day-side to the night-side of the planet, and a consequent emission mainly from the day-side. The high-cadence ground-based technique is capable of detecting the faint signal of the secondary eclipse of extrasolar planets, making it a valuable complement to space-based mid-IR observations.
140 - Guo Chen 2014
We aim to construct a spectral energy distribution (SED) for the emission from the dayside atmosphere of the hot Jupiter WASP-46b and to investigate its energy budget. We observed a secondary eclipse of WASP-46b simultaneously in the grizJHK bands us ing the GROND instrument on the MPG/ESO 2.2m telescope. Eclipse depths of the acquired light curves were derived to infer the brightness temperatures at multibands that cover the SED peak. We report the first detection of the thermal emission from the dayside of WASP-46b in the K band at 4.2-sigma level and tentative detections in the H (2.5-sigma) and J (2.3-sigma) bands, with flux ratios of 0.253 +0.063/-0.060%, 0.194 +/- 0.078%, and 0.129 +/- 0.055%, respectively. The derived brightness temperatures (2306 +177/-187K, 2462 +245/-302K, and 2453 +198/-258K, respectively) are consistent with an isothermal temperature profile of 2386K, which is significantly higher than the dayside-averaged equilibrium temperature, indicative of very poor heat redistribution efficiency. We also investigate the tentative detections in the gri bands and the 3-sigma upper limit in the z band, which might indicate the existence of reflective clouds if these tentative detections do not arise from systematics.
238 - N. P. Gibson 2010
We present an occultation of the newly discovered hot Jupiter system WASP-19, observed with the HAWK-I instrument on the VLT, in order to measure thermal emission from the planets dayside at ~2 um. The light curve was analysed using a Markov-Chain Mo nte-Carlo method to find the eclipse depth and the central transit time. The transit depth was found to be 0.366+-0.072 %, corresponding to a brightness temperature of 2540+-180 K. This is significantly higher than the calculated (zero-albedo) equilibrium temperature, and indicates that the planet shows poor redistribution of heat to the night side, consistent with models of highly irradiated planets. Further observations are needed to confirm the existence of a temperature inversion, and possibly molecular emission lines. The central eclipse time was found to be consistent with a circular orbit.
We analyzed two eclipse observations of the low-density transiting, likely grazing, exoplanet WASP-34b with the Spitzer Space Telescopes InfraRed Array Camera (IRAC) using two techniques to correct for intrapixel sensitivity variation: Pixel-Level De correlation (PLD) and BiLinearly Interpolated Subpixel Sensitivity (BLISS). When jointly fitting both light curves, timing results are consistent within 0.7$sigma$ between the two models and eclipse depths are consistent within 1.1$sigma$, where the difference is due to photometry methods, not the models themselves. By combining published radial velocity data, amateur and professional transit observations, and our eclipse timings, we improved upon measurements of orbital parameters and found an eccentricity consistent with zero (0.0). Atmospheric retrieval, using our Bayesian Atmospheric Radiative Transfer code (BART), shows that the planetary spectrum most resembles a blackbody, with no constraint on molecular abundances or vertical temperature variation. WASP-34b is redder than other warm Jupiters with a similar temperature, hinting at unique chemistry, although further observations are necessary to confirm this.
Observations of ultra-hot Jupiters indicate the existence of thermal inversion in their atmospheres with day-side temperatures greater than 2200 K. Various physical mechanisms such as non-local thermal equilibrium, cloud formation, disequilibrium che mistry, ionisation, hydrodynamic waves and associated energy, have been omitted in previous spectral retrievals while they play an important role on the thermal structure of their upper atmospheres.We aim at exploring the atmospheric properties of WASP-19b to understand its largely featureless thermal spectra using a state-of-the-art atmosphere code that includes a detailed treatment of the most important physical and chemical processes at play in such atmospheres.We used the one-dimensional line-by-line radiative transfer code PHOENIX in its spherical symmetry configuration including the BT-Settl cloud model and C/O disequilibrium chemistry to analyse the observed thermal spectrum of WASP-19b. Results. We find evidence for a thermal inversion in the day-side atmosphere of the highly irradiated ultra-hot Jupiter WASP-19b with Teq ~ 2700 K. At these high temperatures we find that H2O dissociates thermally at pressure below 10^-2 bar. The inverted temperature-pressure profiles of WASP-19b show the evidence of CO emission features at 4.5 micron in its secondary eclipse spectra.We find that the atmosphere ofWASP-19b is thermally inverted.We infer that the thermal inversion is due to the strong impinging radiation. We show that H2O is partially dissociated in the upper atmosphere above about tau = 10^-2, but is still a significant contributor to the infrared-opacity, dominated by CO. The high-temperature and low-density conditions cause H2O to have a flatter opacity profile than in non-irradiated brown dwarfs.Altogether these factors makes H2O more difficult to identify in WASP-19b.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا