ترغب بنشر مسار تعليمي؟ اضغط هنا

The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources, fundamentally changing the configuration of energy management and introducing new criticalities that are only partly und erstood. In particular, renewable energies introduce fluctuations causing an increased request of conventional energy sources oriented to balance energy requests on short notices. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and the forecast of short time fluctuations related to renewable sources and to their effects on the electricity market. To account for the inter-dependencies among the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations on the power system and an agent based approach for the prediction of the market players behavior. Our model is a data-driven; it builds on one day ahead real market transactions to train agents behaviour and allows to infer the market share of different energy sources. We benchmark our approach on the Italian market finding a good accordance with real data.
The spreading of unsubstantiated rumors on online social networks (OSN) either unintentionally or intentionally (e.g., for political reasons or even trolling) can have serious consequences such as in the recent case of rumors about Ebola causing disr uption to health-care workers. Here we show that indicators aimed at quantifying information consumption patterns might provide important insights about the virality of false claims. In particular, we address the driving forces behind the popularity of contents by analyzing a sample of 1.2M Facebook Italian users consuming different (and opposite) types of information (science and conspiracy news). We show that users engagement across different contents correlates with the number of friends having similar consumption patterns (homophily), indicating the area in the social network where certain types of contents are more likely to spread. Then, we test diffusion patterns on an external sample of $4,709$ intentional satirical false claims showing that neither the presence of hubs (structural properties) nor the most active users (influencers) are prevalent in viral phenomena. Instead, we found out that in an environment where misinformation is pervasive, users aggregation around shared beliefs may make the usual exposure to conspiracy stories (polarization) a determinant for the virality of false information.
We introduce the concept of self-healing in the field of complex networks. Obvious applications range from infrastructural to technological networks. By exploiting the presence of redundant links in recovering the connectivity of the system, we intro duce self-healing capabilities through the application of distributed communication protocols granting the smartness of the system. We analyze the interplay between redundancies and smart reconfiguration protocols in improving the resilience of networked infrastructures to multiple failures; in particular, we measure the fraction of nodes still served for increasing levels of network damages. We study the effects of different connectivity patterns (planar square-grids, small-world, scale-free networks) on the healing performances. The study of small-world topologies shows us that the introduction of some long-range connections in the planar grids greatly enhances the resilience to multiple failures giving results comparable to the most resilient (but less realistic) scale-free structures.
We present a novel method to reconstruct complex network from partial information. We assume to know the links only for a subset of the nodes and to know some non-topological quantity (fitness) characterising every node. The missing links are generat ed on the basis of the latter quan- tity according to a fitness model calibrated on the subset of nodes for which links are known. We measure the quality of the reconstruction of several topological properties, such as the network density and the degree distri- bution as a function of the size of the initial subset of nodes. Moreover, we also study the resilience of the network to distress propagation. We first test the method on ensembles of synthetic networks generated with the Exponential Random Graph model which allows to apply common tools from statistical mechanics. We then test it on the empirical case of the World Trade Web. In both cases, we find that a subset of 10 % of nodes is enough to reconstruct the main features of the network along with its resilience with an error of 5%.
In the last few years we have witnessed the emergence, primarily in on-line communities, of new types of social networks that require for their representation more complex graph structures than have been employed in the past. One example is the folks onomy, a tripartite structure of users, resources, and tags -- labels collaboratively applied by the users to the resources in order to impart meaningful structure on an otherwise undifferentiated database. Here we propose a mathematical model of such tripartite structures which represents them as random hypergraphs. We show that it is possible to calculate many properties of this model exactly in the limit of large network size and we compare the results against observations of a real folksonomy, that of the on-line photography web site Flickr. We show that in some cases the model matches the properties of the observed network well, while in others there are significant differences, which we find to be attributable to the practice of multiple tagging, i.e., the application by a single user of many tags to one resource, or one tag to many resources.
In this paper we study the properties of the Barabasi model of queueing under the hypothesis that the number of tasks is steadily growing in time. We map this model exactly onto an Invasion Percolation dynamics on a Cayley tree. This allows to recove r the correct waiting time distribution $P_W(tau)sim tau^{-3/2}$ at the stationary state (as observed in different realistic data) and also to characterize it as a sequence of causally and geometrically connected bursts of activity. We also find that the approach to stationarity is very slow.
In this chapter we discuss how the results developed within the theory of fractals and Self-Organized Criticality (SOC) can be fruitfully exploited as ingredients of adaptive network models. In order to maintain the presentation self-contained, we fi rst review the basic ideas behind fractal theory and SOC. We then briefly review some results in the field of complex networks, and some of the models that have been proposed. Finally, we present a self-organized model recently proposed by Garlaschelli et al. [Nat. Phys. 3, 813 (2007)] that couples the fitness network model defined by Caldarelli et al. [Phys. Rev. Lett. 89, 258702 (2002)] with the evolution model proposed by Bak and Sneppen [Phys. Rev. Lett. 71, 4083 (1993)] as a prototype of SOC. Remarkably, we show that the results obtained for the two models separately change dramatically when they are coupled together. This indicates that self-organized networks may represent an entirely novel class of complex systems, whose properties cannot be straightforwardly understood in terms of what we have learnt so far.
Here we provide a detailed analysis, along with some extensions and additonal investigations, of a recently proposed self-organised model for the evolution of complex networks. Vertices of the network are characterised by a fitness variable evolving through an extremal dynamics process, as in the Bak-Sneppen model representing a prototype of Self-Organized Criticality. The network topology is in turn shaped by the fitness variable itself, as in the fitness network model. The system self-organizes to a nontrivial state, characterized by a power-law decay of dynamical and topological quantities above a critical threshold. The interplay between topology and dynamics in the system is the key ingredient leading to an unexpected behaviour of these quantities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا