ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a new strategy to uncover light, quasi-degenerate Higgsinos, a likely ingredient in a natural supersymmetric model. Our strategy focuses on Higgsinos with inter-state splittings of O(5-50) GeV that are produced in association with a hard, initial state jet and decay via off-shell gauge bosons to two or more leptons and missing energy, $pp to j + text{MET}, + 2^+, ell$. The additional jet is used for triggering, allowing us to significantly loosen the lepton requirements and gain sensitivity to small inter-Higgsino splittings. Focusing on the two-lepton signal, we find the seemingly large backgrounds from diboson plus jet, $bar tt$ and $Z/gamma^* + j$ can be reduced with careful cuts, and that fake backgrounds appear minor. For Higgsino masses $m_{chi}$ just above the current LEP II bound ($mu simeq 110,$) GeV we find the significance can be as high as 3 sigma at the LHC using the existing 20 fb$^{-1}$ of 8 TeV data. Extrapolating to LHC at 14 TeV with 100 fb$^{-1}$ data, and as one example $M_1 = M_2 = 500$ GeV, we find 5 sigma evidence for $m_{chi} lesssim, 140,$ GeV and 2 sigma evidence for $m_{chi} lesssim, 200,$ GeV . We also present a reinterpretation of ATLAS/CMS monojet bounds in terms of degenerate Higgsino ($delta m_{chi} ll 5,$) GeV plus jet production. We find the current monojet bounds on $m_{chi}$ are no better than the chargino bounds from LEP II.
In the light of the LHC, we revisit the implications of a fourth generation of chiral matter. We identify a specific ensemble of particle masses and mixings that are in agreement with all current experimental bounds as well as minimize the contributi ons to electroweak precision observables. Higgs masses between 115-315 (115-750) GeV are allowed by electroweak precision data at the 68% and 95% CL. Within this parameter space, there are dramatic effects on Higgs phenomenology: production rates are enhanced, weak-boson-fusion channels are suppressed, angular distributions are modified, and Higgs pairs can we observed. We also identify exotic signals, such as Higgs decay to same-sign dileptons. Finally, we estimate the upper bound on the cutoff scale from vacuum stability and triviality.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا