ترغب بنشر مسار تعليمي؟ اضغط هنا

We present accurate models of the gravitational potential produced by a radially exponential disk mass distribution. The models are produced by combining three separate Miyamoto-Nagai disks. Such models have been used previously to model the disk of the Milky Way, but here we extend this framework to allow its application to disks of any mass, scalelength, and a wide range of thickness from infinitely thin to near spherical (ellipticities from 0 to 0.9). The models have the advantage of simplicity of implementation, and we expect faster run speeds over a double exponential disk treatment. The potentials are fully analytical, and differentiable at all points. The mass distribution of our models deviates from the radial mass distribution of a pure exponential disk by <0.4% out to 4 disk scalelengths, and <1.9% out to 10 disk scalelengths. We tabulate fitting parameters which facilitate construction of exponential disks for any scalelength, and a wide range of disk thickness (a user-friendly, web-based interface is also available). Our recipe is well suited for numerical modelling of the tidal effects of a giant disk galaxy on star clusters or dwarf galaxies. We consider three worked examples; the Milky Way thin and thick disk, and a disky dwarf galaxy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا