ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab initio methods using weakly interacting nucleons give a good description of condensed nuclear matter up to densities comparable to the nuclear saturation density. At higher densities palpable strong interactions between overlapping nucleons become important; we propose that the interactions will continuously switch over to follow a holographic model in this region. In order to implement this, we construct hybrid equations of state (EoSs) where various models are used for low density nuclear matter, and the holographic V-QCD model is used for non-perturbative high density nuclear matter as well as for quark matter. We carefully examine all existing constraints from astrophysics of compact stars and discuss their implications for the hybrid EoSs. Thanks to the stiffness of the V-QCD EoS for nuclear matter, we obtain a large family of viable hybrid EoSs passing the constraints. We find that quark matter cores in neutron stars are unstable due to the strongly first order deconfinement transition, and predict bounds on the tidal deformability as well as on the radius of neutron stars. By relying on universal relations, we also constrain characteristic peak frequencies of gravitational waves produced in neutron star mergers.
We establish a holographic bottom-up model which covers both the baryonic and quark matter phases in cold and dense QCD. This is obtained by including the baryons using simple approximation schemes in the V-QCD model, which also includes the backreac tion of the quark matter to the dynamics of pure Yang-Mills. We examine two approaches for homogeneous baryon matter: baryons as a thin layer of noninteracting matter in the holographic bulk, and baryons with a homogeneous bulk gauge field. We find that the second approach exhibits phenomenologically reasonable features. At zero temperature, the vacuum, baryon, and quark matter phases are separated by strongly first order transitions as the chemical potential varies. The equation of state in the baryonic phase is found to be stiff, i.e., the speed of sound clearly exceeds the value $c_s^2=1/3$ of conformal plasmas at high baryon densities.
We investigate the effects of anisotropy on the chiral condensate in a holographic model of QCD with a fully backreacted quark sector at vanishing chemical potential. The high temperature deconfined phase is a neutral and anisotropic plasma showing d ifferent pressure gradients along different spatial directions, similar to the state produced in noncentral heavy-ion collisions. We find that the chiral transition occurs at a lower temperature in the presence of anisotropy. Equivalently, we find that anisotropy acts destructively on the chiral condensate near the transition temperature. These are precisely the same footprints as the inverse magnetic catalysis i.e. the destruction of the condensate with increasing magnetic field observed earlier on the lattice, in effective field theory models and in holography. Based on our findings we suggest, in accordance with the conjecture of [1], that the cause for the inverse magnetic catalysis may be the anisotropy caused by the presence of the magnetic field instead of the charge dynamics created by it. We conclude that the weakening of the chiral condensate due to anisotropy is more general than that due to a magnetic field and we coin the former inverse anisotropic catalysis. Finally, we observe that any amount of anisotropy changes the IR physics substantially: the geometry is $text{AdS}_4 times mathbb{R}$ up to small corrections, confinement is present only up to a certain scale, and the particles acquire finite widths.
We investigate the phase diagram of QCD-like gauge theories at strong coupling at finite magnetic field $B$, temperature $T$ and baryon chemical potential $mu$ using the improved holographic QCD model including the full backreaction of the quarks in the plasma. In addition to the phase diagram we study the behavior of the quark condensate as a function of $T$, $B$ and $mu$ and discuss the fate of (inverse) magnetic catalysis at finite $mu$. In particular we observe that inverse magnetic catalysis exists only for small values of the baryon chemical potential. The speed of sound in this holographic quark-gluon plasma exhibits interesting dependence on the thermodynamic parameters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا