ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlations that violate a Bell Inequality are said to be nonlocal, i.e. they do not admit a local and deterministic explanation. Great effort has been devoted to study how the amount of nonlocality (as measured by a Bell inequality violation) serve s to quantify the amount of randomness present in observed correlations. In this work we reverse this research program and ask what do the randomness certification capabilities of a theory tell us about the nonlocality of that theory. We find that, contrary to initial intuition, maximally nonlocal theories cannot allow maximal randomness certification. We go on and show that quantum theory, in contrast, permits certification of maximal randomness in all dichotomic scenarios. We hence pose the question of whether quantum theory is optimal for randomness, i.e. is it the most nonlocal theory that allows maximal randomness certification? We answer this question in the negative by identifying a larger-than-quantum set of correlations capable of this feat. Not only are these results relevant to understanding quantum mechanics fundamental features, but also put fundamental restrictions on device-independent protocols based on the no-signaling principle.
Randomness comes in two qualitatively different forms. Apparent randomness can result both from ignorance or lack of control of degrees of freedom in the system. In contrast, intrinsic randomness should not be ascribable to any such cause. While clas sical systems only possess the first kind of randomness, quantum systems are believed to exhibit some intrinsic randomness. In general, any observed random process includes both forms of randomness. In this work, we provide quantum processes in which all the observed randomness is fully intrinsic. These results are derived under minimal assumptions: the validity of the no-signalling principle and an arbitrary (but not absolute) lack of freedom of choice. The observed randomness tends to a perfect random bit when increasing the number of parties, thus defining an explicit process attaining full randomness amplification.
Do completely unpredictable events exist in nature? Classical theory, being fully deterministic, completely excludes fundamental randomness. On the contrary, quantum theory allows for randomness within its axiomatic structure. Yet, the fact that a th eory makes prediction only in probabilistic terms does not imply the existence of any form of randomness in nature. The question then remains whether one can certify randomness independent of the physical framework used. While standard Bell tests approach this question from this perspective, they require prior perfect randomness, which renders the approach circular. Recently, it has been shown that it is possible to certify full randomness using almost perfect random bits. Here, we prove that full randomness can indeed be certified using quantum non-locality under the minimal possible assumptions: the existence of a source of arbitrarily weak (but non-zero) randomness and the impossibility of instantaneous signalling. Thus we are left with a strict dichotomic choice: either our world is fully deterministic or there exist in nature events that are fully random. Apart from the foundational implications, our results represent a quantum protocol for full randomness amplification, an information task known to be impossible classically. Finally, they open a new path for device-independent protocols under minimal assumptions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا