ترغب بنشر مسار تعليمي؟ اضغط هنا

We present results of cosmological simulations of disk galaxies carried out with the GADGET-3 TreePM+SPH code, where star formation and stellar feedback are described using our MUlti Phase Particle Integrator (MUPPI) model. This description is based on simple multi-phase model of the interstellar medium at unresolved scales, where mass and energy flows among the components are explicitly followed by solving a system of ordinary differential equations. Thermal energy from SNe is injected into the local hot phase, so as to avoid that it is promptly radiated away. A kinetic feedback prescription generates the massive outflows needed to avoid the over-production of stars. We use two sets of zoomed-in initial conditions of isolated cosmological halos with masses (2-3) * 10^{12} Msun, both available at several resolution levels. In all cases we obtain spiral galaxies with small bulge-over-total stellar mass ratios (B/T approx 0.2), extended stellar and gas disks, flat rotation curves and realistic values of stellar masses. Gas profiles are relatively flat, molecular gas is found to dominate at the centre of galaxies, with star formation rates following the observed Schmidt-Kennicutt relation. Stars kinematically belonging to the bulge form early, while disk stars show a clear inside-out formation pattern and mostly form after redshift z=2. However, the baryon conversion efficiencies in our simulations differ from the relation given by Moster et al. (2010) at a 3 sigma level, thus indicating that our stellar disks are still too massive for the Dark Matter halo in which they reside. Results are found to be remarkably stable against resolution. This further demonstrates the feasibility of carrying out simulations producing a realistic population of galaxies within representative cosmological volumes, at a relatively modest resolution.
We measure and quantify properties of galactic outflows and diffuse gas at $z geq 1$ in cosmological hydrodynamical simulations. Our novel sub-resolution model, MUPPI, implements supernova feedback using fully local gas properties, where the wind vel ocity and mass loading are not given as input. We find the following trends at $z = 2$ by analysing central galaxies having a stellar mass higher than $10^{9} M_{odot}$. The outflow velocity and mass outflow rate ($dot{M}_{rm out}$) exhibit positive correlations with galaxy mass and with the star formation rate (SFR). However, most of the relations present a large scatter. The outflow mass loading factor ($eta$) is between $0.2 - 10$. The comparison Effective model generates a constant outflow velocity, and a negative correlation of $eta$ with halo mass. The number fraction of galaxies where outflow is detected decreases at lower redshifts, but remains more than $80 %$ over $z = 1 - 5$. High SF activity at $z sim 2 - 4$ drives strong outflows, causing the positive and steep correlations of velocity and $dot{M}_{rm out}$ with SFR. The outflow velocity correlation with SFR becomes flatter at $z = 1$, and $eta$ displays a negative correlation with halo mass in massive galaxies. Our study demonstrates that both the MUPPI and Effective models produce significant outflows at $sim 1 / 10$ of the virial radius; at the same time shows that the properties of outflows generated can be different from the input speed and mass loading in the Effective model. Our MUPPI model, using local properties of gas in the sub-resolution recipe, is able to develop galactic outflows whose properties correlate with global galaxy properties, and consistent with observations.
As a contribution to the study of the habitability of extrasolar planets, we implemented a 1-D Energy Balance Model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planets surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p=1/3 bar to p=3 bar. At low pressure, the habitability is low and varies with a; at high pressure, the habitability is high and relatively constant inside the HZ. We interpret these results in terms of the pressure dependence of the greenhouse effect, the effciency of horizontal heat transport, and the extent of the liquid water temperature range. Within the limits discussed in the paper, the results can be extended to planets in eccentric orbits around non-solar type stars. The main characteristics of the pressure-dependent HZ are modestly affected by variations of planetary properties, particularly at high pressure.
We present results from high--resolution cosmological hydrodynamical simulations of a Milky--Way-sized halo, aimed at studying the effect of feedback on the nature of gas accretion. Simulations include a model of inter-stellar medium and star formati on, in which SN explosions provide effective thermal feedback. We distinguish between gas accretion onto the halo, which occurs when gas particles cross the halo virial radius, and gas accretion onto the central galaxy, which takes place when gas particles cross the inner one-tenth of the virial radius. Gas particles can be accreted through three different channels, depending on the maximum temperature value, $T_{rm max}$, reached during the particles past evolution: a cold channel for $T_{rm max}<2.5 times 10^5$ K, a hot one for $T>10^6$K, and a warm one for intermediate values of $T_{rm max}$. We find that the warm channel is at least as important as the cold one for gas accretion onto the central galaxy. This result is at variance with previous findings that the cold mode dominates gas accretion at high redshift. We ascribe this difference to the different supernova feedback scheme implemented in our simulations. While results presented so far in the literature are based on uneffective SN thermal feedback schemes and/or the presence of a kinetic feedback, our simulations include only effective thermal feedback. We argue that observational detections of a warm accretion mode in the high--redshift circum-galactic medium would provide useful constraints on the nature of the feedback that regulates star formation in galaxies.
We present results based on an implementation of the Godunov Smoothed Particle Hydrodynamics (GSPH), originally developed by Inutsuka (2002), in the GADGET-3 hydrodynamic code. We first review the derivation of the GSPH discretization of the equation s of moment and energy conservation, starting from the convolution of these equations with the interpolating kernel. The two most important aspects of the numerical implementation of these equations are (a) the appearance of fluid velocity and pressure obtained from the solution of the Riemann problem between each pair of particles, and (b the absence of an artificial viscosity term. We carry out three different controlled hydrodynamical three-dimensional tests, namely the Sod shock tube, the development of Kelvin-Helmholtz instabilities in a shear flow test, and the blob test describing the evolution of a cold cloud moving against a hot wind. The results of our tests confirm and extend in a number of aspects those recently obtained by Cha (2010): (i) GSPH provides a much improved description of contact discontinuities, with respect to SPH, thus avoiding the appearance of spurious pressure forces; (ii) GSPH is able to follow the development of gas-dynamical instabilities, such as the Kevin--Helmholtz and the Rayleigh-Taylor ones; (iii) as a result, GSPH describes the development of curl structures in the shear-flow test and the dissolution of the cold cloud in the blob test. We also discuss in detail the effect on the performances of GSPH of changing different aspects of its implementation. The results of our tests demonstrate that GSPH is in fact a highly promising hydrodynamic scheme, also to be coupled to an N-body solver, for astrophysical and cosmological applications. [abridged]
132 - Giuseppe Murante 2010
We provide a set of numerical N-body simulations for studying the formation of the outer Milky Wayss stellar halo through accretion events. After simulating minor mergers of prograde and retrograde orbiting satellite halo with a Dark Matter main halo , we analyze the signal left by satellite stars in the rotation velocity distribution. The aim is to explore the orbital conditions where a retrograde signal in the outer part of the halo can be obtained, in order to give a possible explanation of the observed rotational properties of the Milky Way stellar halo. Our results show that, for satellites more massive than $sim 1/40$ of the main halo, the dynamical friction has a fundamental role in assembling the final velocity distributions resulting from different orbits and that retrograde satellites moving on low inclination orbits deposit more stars in the outer halo regions end therefore can produce the counter-rotating behavior observed in the outer Milky Way halo.
We present a new multi-phase sub-resolution model for star formation and feedback in SPH numerical simulations of galaxy formation. Our model, called MUPPI (MUlti-Phase Particle Integrator), describes each gas particle as a multi-phase system, with c old and hot gas phases, coexisting in pressure equilibrium, and a stellar component. Cooling of the hot tenuous gas phase feeds the cold gas phase. Stars are formed out of molecular gas with a given efficiency, which scales with the dynamical time of the cold phase. Our prescription for star formation is not based on imposing the Schmidt-Kennicutt relation, which is instead naturally produced by MUPPI. Energy from supernova explosions is deposited partly into the hot phase of the gas particles, and partly to that of neighboring particles. Mass and energy flows among the different phases of each particle are described by a set of ordinary differential equations which we explicitly integrate for each gas particle, instead of relying on equilibrium solutions. This system of equations also includes the response of the multi-phase structure to energy changes associated to the thermodynamics of the gas. We apply our model to two isolated disk galaxy simulations and two spherical cooling flows. MUPPI is able to reproduce the Schmidt-Kennicutt relation for disc galaxies. It also reproduces the basic properties of the inter-stellar medium in disc galaxies, the surface densities of cold and molecular gas, of stars and of star formation rate, the vertical velocity dispersion of cold clouds and the flows connected to the galactic fountains. Quite remarkably, MUPPI also provides efficient stellar feedback without the need to include a scheme of kinetic energy feedback. [abridged]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا