ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient sampling of complex high-dimensional probability densities is a central task in computational science. Machine Learning techniques based on autoregressive neural networks have been recently shown to provide good approximations of probabilit y distributions of interest in physics. In this work, we propose a systematic way to remove the intrinsic bias associated with these variational approximations, combining it with Markov-chain Monte Carlo in an automatic scheme to efficiently generate cluster updates, which is particularly useful for models for which no efficient cluster update scheme is known. Our approach is based on symmetry-enforced cluster updates building on the neural-network representation of conditional probabilities. We demonstrate that such finite-cluster updates are crucial to circumvent ergodicity problems associated with global neural updates. We test our method for first- and second-order phase transitions in classical spin systems, proving in particular its viability for critical systems, or in the presence of metastable states.
We establish a direct connection between general tensor networks and deep feed-forward artificial neural networks. The core of our results is the construction of neural-network layers that efficiently perform tensor contractions, and that use commonl y adopted non-linear activation functions. The resulting deep networks feature a number of edges that closely matches the contraction complexity of the tensor networks to be approximated. In the context of many-body quantum states, this result establishes that neural-network states have strictly the same or higher expressive power than practically usable variational tensor networks. As an example, we show that all matrix product states can be efficiently written as neural-network states with a number of edges polynomial in the bond dimension and depth logarithmic in the system size. The opposite instead does not hold true, and our results imply that there exist quantum states that are not efficiently expressible in terms of matrix product states or practically usable PEPS, but that are instead efficiently expressible with neural network states.
The Quantum Fisher Information (QFI) is a central metric in promising algorithms, such as Quantum Natural Gradient Descent and Variational Quantum Imaginary Time Evolution. Computing the full QFI matrix for a model with $d$ parameters, however, is co mputationally expensive and generally requires $mathcal{O}(d^2)$ function evaluations. To remedy these increasing costs in high-dimensional parameter spaces, we propose using simultaneous perturbation stochastic approximation techniques to approximate the QFI at a constant cost. We present the resulting algorithm and successfully apply it to prepare Hamiltonian ground states and train Variational Quantum Boltzmann Machines.
Gauge symmetries play a key role in physics appearing in areas such as quantum field theories of the fundamental particles and emergent degrees of freedom in quantum materials. Motivated by the desire to efficiently simulate many-body quantum systems with exact local gauge invariance, gauge equivariant neural-network quantum states are introduced, which exactly satisfy the local Hilbert space constraints necessary for the description of quantum lattice gauge theory with Zd gauge group on different geometries. Focusing on the special case of Z2 gauge group on a periodically identified square lattice, the equivariant architecture is analytically shown to contain the loop-gas solution as a special case. Gauge equivariant neural-network quantum states are used in combination with variational quantum Monte Carlo to obtain compact descriptions of the ground state wavefunction for the Z2 theory away from the exactly solvable limit, and to demonstrate the confining/deconfining phase transition of the Wilson loop order parameter.
A notion of quantum natural evolution strategies is introduced, which provides a geometric synthesis of a number of known quantum/classical algorithms for performing classical black-box optimization. Recent work of Gomes et al. [2019] on heuristic co mbinatorial optimization using neural quantum states is pedagogically reviewed in this context, emphasizing the connection with natural evolution strategies. The algorithmic framework is illustrated for approximate combinatorial optimization problems, and a systematic strategy is found for improving the approximation ratios. In particular it is found that natural evolution strategies can achieve approximation ratios competitive with widely used heuristic algorithms for Max-Cut, at the expense of increased computation time.
Quantum simulators are a promising technology on the spectrum of quantum devices from specialized quantum experiments to universal quantum computers. These quantum devices utilize entanglement and many-particle behaviors to explore and solve hard sci entific, engineering, and computational problems. Rapid development over the last two decades has produced more than 300 quantum simulators in operation worldwide using a wide variety of experimental platforms. Recent advances in several physical architectures promise a golden age of quantum simulators ranging from highly optimized special purpose simulators to flexible programmable devices. These developments have enabled a convergence of ideas drawn from fundamental physics, computer science, and device engineering. They have strong potential to address problems of societal importance, ranging from understanding vital chemical processes, to enabling the design of new materials with enhanced performance, to solving complex computational problems. It is the position of the community, as represented by participants of the NSF workshop on Programmable Quantum Simulators, that investment in a national quantum simulator program is a high priority in order to accelerate the progress in this field and to result in the first practical applications of quantum machines. Such a program should address two areas of emphasis: (1) support for creating quantum simulator prototypes usable by the broader scientific community, complementary to the present universal quantum computer effort in industry; and (2) support for fundamental research carried out by a blend of multi-investigator, multi-disciplinary collaborations with resources for quantum simulator software, hardware, and education.
The measurement precision of modern quantum simulators is intrinsically constrained by the limited set of measurements that can be efficiently implemented on hardware. This fundamental limitation is particularly severe for quantum algorithms where co mplex quantum observables are to be precisely evaluated. To achieve precise estimates with current methods, prohibitively large amounts of sample statistics are required in experiments. Here, we propose to reduce the measurement overhead by integrating artificial neural networks with quantum simulation platforms. We show that unsupervised learning of single-qubit data allows the trained networks to accommodate measurements of complex observables, otherwise costly using traditional post-processing techniques. The effectiveness of this hybrid measurement protocol is demonstrated for quantum chemistry Hamiltonians using both synthetic and experimental data. Neural-network estimators attain high-precision measurements with a drastic reduction in the amount of sample statistics, without requiring additional quantum resources.
In experimentally realistic situations, quantum systems are never perfectly isolated and the coupling to their environment needs to be taken into account. Often, the effect of the environment can be well approximated by a Markovian master equation. H owever, solving this master equation for quantum many-body systems, becomes exceedingly hard due to the high dimension of the Hilbert space. Here we present an approach to the effective simulation of the dynamics of open quantum many-body systems based on machine learning techniques. We represent the mixed many-body quantum states with neural networks in the form of restricted Boltzmann machines and derive a variational Monte-Carlo algorithm for their time evolution and stationary states. We document the accuracy of the approach with numerical examples for a dissipative spin lattice system.
96 - Bess Fang 2013
We measure the position- and momentum- space breathing dynamics of trapped one-dimensional Bose gases. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas c rossover. A comparison with theoretical models taking into account the effect of finite temperature is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism. The disappearance of this mechanism through the quasicondensation crossover is mapped out.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا