ﻻ يوجد ملخص باللغة العربية
The Quantum Fisher Information (QFI) is a central metric in promising algorithms, such as Quantum Natural Gradient Descent and Variational Quantum Imaginary Time Evolution. Computing the full QFI matrix for a model with $d$ parameters, however, is computationally expensive and generally requires $mathcal{O}(d^2)$ function evaluations. To remedy these increasing costs in high-dimensional parameter spaces, we propose using simultaneous perturbation stochastic approximation techniques to approximate the QFI at a constant cost. We present the resulting algorithm and successfully apply it to prepare Hamiltonian ground states and train Variational Quantum Boltzmann Machines.
In estimating an unknown parameter of a quantum state the quantum Fisher information (QFI) is a pivotal quantity, which depends on the state and its derivate with respect to the unknown parameter. We prove the continuity property for the QFI in the s
The Quantum Fisher Information (QFI) plays a crucial role in quantum information theory and in many practical applications such as quantum metrology. However, computing the QFI is generally a computationally demanding task. In this work we analyze a
In recent proposals for achieving optical super-resolution, variants of the Quantum Fisher Information (QFI) quantify the attainable precision. We find that claims about a strong enhancement of the resolution resulting from coherence effects are ques
We show that both the classical as well as the quantum definitions of the Fisher information faithfully identify resourceful quantum states in general quantum resource theories, in the sense that they can always distinguish between states with and wi
This review aims at gathering the most relevant quantum multi-parameter estimation methods that go beyond the direct use of the Quantum Fisher Information concept. We discuss in detail the Holevo Cramer-Rao bound, the Quantum Local Asymptotic Normali