ترغب بنشر مسار تعليمي؟ اضغط هنا

We study magneto-transport properties of several amorphous Indium oxide nanowires of different widths. The wires show superconducting transition at zero magnetic field, but, there exist a finite resistance at the lowest temperature. The $R(T)$ broade ning was explained by available phase slip models. At low field, and far below the superconducting critical temperature, the wires with diameter equal to or less than 100 nm, show negative magnetoresistance (nMR). The magnitude of nMR and the crossover field are found to be dependent on both temperature and the cross-sectional area. We find that this intriguing behavior originates from the interplay between two field dependent contributions.
We present a detail study of the electrical resistivity, thermoelectric power, magnetic susceptibility c{hi} and the heat capacity CP in antiferromagnetic layered compounds CuCrS2 and CuCrSe2 at 2K-300K. CuCrS2 showed sharp cusp in c{hi} and a lambda -like peak in CP at TN = 40K as expected for a 3D- magnetic order, while more metallic CuCrSe2 showed a rounded maximum in c{hi} and the absence of sharp peak in CP around 55K, the CP at low temperature has T2-dependence in it which suggests the absence of the long range order and 2D spin-liquid like excitation in its magnetic phase. We explain the absence of the magnetic order in the selenide compound as resulting from the effective competition of the magnetic interactions from the distant neighbors; the indirect exchange among the intra-layer Cr-atoms increases in more metallic selenide compound which competes with the direct antiferromagnetic interactions between the Cr-atoms of different layers which destroys the long range magnetic order.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا