ترغب بنشر مسار تعليمي؟ اضغط هنا

We present high resolution submillimeter interferometric imaging of two of the brightest high-redshift submillimeter galaxies known: GN20 and AzTEC1 at 0.8 and 0.3 arcsec resolution respectively. Our data - the highest resolution submillimeter imagin g of high redshift sources accomplished to date - was collected in three different array configurations: compact, extended, and very extended. We derive angular sizes of 0.6 and 1.0 arcsec for GN20 and 0.3 and 0.4 arcsec for AzTEC1 from modeling their visibility functions as a Gaussian and elliptical disk respectively. Because both sources are B-band dropouts, they likely lie within a relatively narrow redshift window around z~4, which indicates their angular extent corresponds to physical scales of 4-8 and 1.5-3 kpc respectively for the starburst region. By way of a series of simple assumptions, we find preliminary evidence that these hyperluminous starbursts - with star formation rates >1000 $M_odot$ yr$^{-1}$ - are radiating at or close to their Eddington limit. Should future high resolution observations indicate that these two objects are typical of a population of high redshift Eddington-limited starbursts, this could have important consequences for models of star formation and feedback in extreme environments.
We present here the first observation of galactic AGB stars with the InfraRed Array Camera (IRAC) onboard the Spitzer Space Telescope. Our sample consists of 48 AGB stars of different chemical signature, mass loss rate and variability class. For each star we have measured IRAC photometry and colors. Preliminary results shows that IRAC colors are sensitive to spectroscopic features associated to molecules and dust in the AGB wind. Period is only loosely correlated to the brightness of the stars in the IRAC bands. We do find, however, a tight period-color relation for sources classified as semiregular variables. This may be interpreted as the lack of warm dust in the wind of the sources in this class, as opposed to Mira variables that show higher infrared excess in all IRAC bands.
We have used the Submillimeter Array to image a flux limited sample of seven submillimeter galaxies, selected by the AzTEC camera on the JCMT at 1.1 mm, in the COSMOS field at 890um with 2 resolution. All of the sources - two radio-bright and five ra dio-dim - are detected as single point-sources at high significance (> 6sigma), with positions accurate to 0.2 that enable counterpart identification at other wavelengths observed with similarly high angular resolution. All seven have IRAC counterparts, but only two have secure counterparts in deep HST/ACS imaging. As compared to the two radio-bright sources in the sample, and those in previous studies, the five radio-dim sources in the sample (1) have systematically higher submillimeter-to-radio flux ratios, (2) have lower IRAC 3.6-8.0um fluxes, and (3) are not detected at 24um. These properties, combined with size constraints at 890um (theta < 1.2), suggest that the radio-dim submillimeter galaxies represent a population of very dusty starbursts, with physical scales similar to local ultraluminous infrared galaxies, and an average redshift higher than radio-bright sources.
We present the rest-frame ultraviolet through near infrared spectral energy distribution for an interacting Lyman break galaxy at a redshift z=4.42, the highest redshift merging system known with clearly resolved tidal features. The two objects in th is system - HDF-G4 and its previously unidentified companion - are both B_{435} band dropouts, have similar V_{606}-i_{775} and i_{775}-z_{850} colors, and are separated by 1, which at z=4.42 corresponds to 7 kpc projected nuclear separation; all indicative of an interacting system. Fits to stellar population models indicate a stellar mass of M_star = 2.6times 10^{10} M_odot, age of tau_star = 720 My, and exponential star formation history with an e-folding time tau_0 = 440 My. Using these derived stellar populations as constraints, we model the HDF-G4 system using hydrodynamical simulations, and find that it will likely evolve into a quasar by zsim3.5, and a quiescent, compact spheroid by zsim 2.5 similar to those observed at z > 2. And, the existence of such an object supports galaxy formation models in which major mergers drive the high redshift buildup of spheroids and black holes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا