ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the topological properties of attractors of Iterated Function Systems (I.F.S.) on the real line, consisting of affine maps of homogeneous contraction ratio. These maps define what we call a second generation I.F.S.: they are uncountably many and the set of their fixed points is a Cantor set. We prove that when this latter either is the attractor of a finite, non-singular, hyperbolic, I.F.S. (of first generation), or it possesses a particular dissection property, the attractor of the second generation I.F.S. consists of finitely many closed intervals.
84 - Giorgio Mantica 2015
We describe a numerical procedure to compute the so-called isospectral torus of finite gap sets, that is, the set of Jacobi matrices whose essential spectrum is composed of finitely many intervals. We also study numerically the convergence of specifi c Jacobi matrices to their isospectral limit. We then extend the analyis to the definition and computation of an isospectral torus for Cantor sets in the family of Iterated Function Systems. This analysis is developed with the ultimate goal of attacking numerically the conjecture that the Jacobi matrices of I.F.S. measures supported on Cantor sets are asymptotically almost-periodic.
67 - Giorgio Mantica 2013
We study the orthogonal polynomials associated with the equilibrium measure, in logarithmic potential theory, living on the attractor of an Iterated Function System. We construct sequences of discrete measures, that converge weakly to the equilibrium measure, and we compute their Jacobi matrices via standard procedures, suitably enhanced for the scope. Numerical estimates of the convergence rate to the limit Jacobi matrix are provided, that show stability and efficiency of the whole procedure. As a secondary result, we also compute Jacobi matrices of equilibrium measures on finite sets of intervals, and of balanced measures of Iterated Function Systems. These algorithms can reach large orders: we study the asymptotic behavior of the orthogonal polynomials and we show that they can be used to efficiently compute Greens functions and conformal mappings of interest in constructive function theory.
148 - Giorgio Mantica 2013
We study the attractor of Iterated Function Systems composed of infinitely many affine, homogeneous maps. In the special case of second generation IFS, defined herein, we conjecture that the attractor consists of a finite number of non-overlapping in tervals. Numerical techniques are described to test this conjecture, and a partial rigorous result in this direction is proven.
144 - Giorgio Mantica 2013
We describe a numerical technique to compute the equilibrium measure, in logarithmic potential theory, living on the attractor of Iterated Function Systems composed of one-dimensional affine maps. This measure is obtained as the limit of a sequence o f equilibrium measures on finite unions of intervals. Although these latter are known analytically, their computation requires the evaluation of a number of integrals and the solution of a non-linear set of equations. We unveil the potential numerical dangers hiding in these problems and we propose detailed solutions to all of them. Convergence of the procedure is illustrated in specific examples and is gauged by computing the electrostatic potential.
31 - Giorgio Mantica 2011
We introduce a new set of algorithms to compute Jacobi matrices associated with measures generated by infinite systems of iterated functions. We demonstrate their relevance in the study of theoretical problems, such as the continuity of these measure s and the logarithmic capacity of their support. Since our approach is based on a reversible transformation between pairs of Jacobi matrices, we also discuss its application to an inverse / approximation problem. Numerical experiments show that the proposed algorithms are stable and can reliably compute Jacobi matrices of large order.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا