ترغب بنشر مسار تعليمي؟ اضغط هنا

The Cauchy-Kowalewskaya (CK) procedure is a key building block in the design of solvers for the Generalised Rieman Problem (GRP) based on Taylor series expansions in time. The CK procedure allows us to express time derivatives in terms of purely spac e derivatives. This is a very cumbersome procedure, which often requires the use of software manipulators. In this paper, a simplification of the CK procedure is proposed in the context of implicit Taylor series expansion for GRP, for hyperbolic balance laws in the framework of [Journal of Computational Physics 303 (2015) 146-172]. A recursive formula for the CK procedure, which is straightforwardly implemented in computational codes, is obtained. The proposed GRP solver is used in the context of the ADER approach and several one-dimensional problems are solved to demonstrate the applicability and efficiency of the present scheme. An enhancement in terms of efficiency, is obtained. Furthermore, the expected theoretical orders of accuracy are achieved, conciliating accuracy and stability.
The Riemann problem, and the associated generalized Riemann problem, are increasingly seen as the important building blocks for modern higher order Godunov-type schemes. In the past, building a generalized Riemann problem solver was seen as an intric ately mathematical task for complicated physical or engineering problems because the associated Riemann problem is different for each hyperbolic system of interest. This paper changes that situation. The HLLI Riemann solver is a recently-proposed Riemann solver that is universal in that it is applicable to any hyperbolic system, whether in conservation form or with non-conservative products. The HLLI Riemann solver is also complete in the sense that if it is given a complete set of eigenvectors, it represents all waves with minimal dissipation. It is, therefore, very attractive to build a generalized Riemann problem solver version of the HLLI Riemann solver. This is the task that is accomplished in the present paper. We show that at second order, the generalized Riemann problem version of the HLLI Riemann solver is easy to design. Our GRP solver is also complete and universal because it inherits those good properties from original HLLI Riemann solver. We also show how our GRP solver can be adapted to the solution of hyperbolic systems with stiff source terms. Our generalized HLLI Riemann solver is easy to implement and performs robustly and well over a range of test problems. All implementation-related details are presented. Results from several stringent test problems are shown. These test problems are drawn from many different hyperbolic systems, and include hyperbolic systems in conservation form; with non-conservative products; and with stiff source terms. The present generalized Riemann problem solver performs well on all of them.
131 - Gino I. Montecinos 2015
Analytic solutions for Burgers equations with source terms, possibly stiff, represent an important element to assess numerical schemes. Here we present a procedure, based on the characteristic technique to obtain analytic solutions for these equations with smooth initial conditions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا