ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that both flavor-conserving and flavor-violating Yukawa couplings of the Higgs boson to first- and second-generation quarks can be probed by measuring rare decays of the form h->MV, where M denotes a vector meson and V indicates either gamma, W or Z. We calculate the branching ratios for these processes in both the Standard Model and its possible extensions. We discuss the experimental prospects for their observation. The possibility of accessing these Higgs couplings appears to be unique to the high-luminosity LHC and future hadron colliders, providing further motivation for those machines.
We introduce a new class of infrared safe jet observables, which we refer to as template overlaps, designed to filter targeted highly boosted particle decays from QCD jets and other background. Template overlaps are functional measures that quantify how well the energy flow of a physical jet matches the flow of a boosted partonic decay. Any region of the partonic phase space for the boosted decays defines a template. We will refer to the maximum functional overlap found this way as the template overlap. To illustrate the method, we test lowest-order templates designed to distinguish highly-boosted top and Higgs decays from backgrounds produced by event generators. For the functional overlap, we find good results with a simple construction based on a Gaussian in energy differences within angular regions surrounding the template partons. Although different event generators give different averages for our template overlaps, we find in each case excellent rejection power, especially when combined with cuts based on jet shapes. The template overlaps are capable of systematic improvement by including higher order corrections in the template phase space.
122 - Gilad Perez , Lisa Randall 2009
We demonstrate that flavor symmetries in warped geometry can provide a natural explanation for large mixing angles and economically explain the distinction between the quark and lepton flavor sectors. We show how to naturally generate Majorana neutri no masses assuming a gauged a U(1)_{B-L} symmetry broken in the UV that generates see-saw masses of the right size. This model requires lepton minimal flavor violation (LMFV) in which only Yukawa matrices (present on the IR brane) break the flavor symmetries. The symmetry-breaking is transmitted to charged lepton bulk mass parameters as well to generate the hierarchy of charged lepton masses. With LMFV, a GIM-like mechanism prevents dangerous flavor-changing processes for charged leptons and permits flavor-changing processes only in the presence of the neutrino Yukawa interaction and are therefore suppressed when the overall scale for the neutrino Yukawa matrix is slightly smaller than one in units of the curvature. In this case the theory can be consistent with a cutoff of 10 TeV and 3 TeV Kaluza-Klein masses.
We present a variant of the warped extra dimension, Randall-Sundrum (RS), framework which is based on five dimensional (5D) minimal flavor violation (MFV), in which the only sources of flavor breaking are two 5D anarchic Yukawa matrices. The Yukawa m atrices also control the bulk masses, which are responsible for the resulting flavor structure and mass hierarchy in the low energy theory. An interesting result of this set-up is that at low energies the theory flows to next to MFV model where flavor violation is dominantly coming from the third generation. Low energy flavor violation is further suppressed by a single parameter that dials the amount of violation in the up or down sector. There is therefore a sharp limit in which there is no flavor violation in the down type quark sector which, remarkably, is favored when we fit for the flavor parameters. This mechanism is used to eliminate the current RS flavor and CP problem even with a Kaluza-Klein scale as low as 2 TeV! Our construction also suggests that economic supersymmetric and non-supersymmetric, strong dynamic-based, flavor models may be built based on the same concepts.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا