ترغب بنشر مسار تعليمي؟ اضغط هنا

The present article reports a method for the average grain size evaluation of superconducting nano-particles through their magnetic properties. The use of SQUID magnetometry to determine the average MgB2 particle size was investigated and the results compared with those achieved through other techniques. In particular the data obtained from zero field cooled magnetization measurement as function of the temperature were compared with the results obtained by scanning electron microscopy and Brunauer-Emmett-Teller techniques. The particle magnetization was measured by a commercial SQUID magnetometer in magnetic field (1 mT) and temperatures ranging from 5 to 50 K dispersing the powders in a grease medium. The grain size is obtained by fitting the data taking into account the Ginzburg-Landau temperature dependence of the London penetration depth. Variations on typical modeling parameters were explored in order to gain a better picture of the average grain size and the effectiveness of various measurement techniques. We find that it is possible to use the magnetization measurements to determine the average grain size even if the SEM image analysis allows extracting more information about the grain size distribution. Furthermore a Matlab routine has been developed in order to get automatic analysis of SEM images.
Promising results reported in our previous works led us to think that production of B powder plays a crucial role in MgB2 synthesis. A new method for boron preparation has been developed in our laboratory. This particular process is based on magnesio thermic reaction (Moissan process) with the addition of an initial step that gives boron powder with nano-metric grain size. In this paper we report our efforts regarding optimization of PIT method for these nanometric powders and the resolution of problems previously highlighted such as the difficulty in powder packaging and the high friction phenomena occurring during cold working. This increases cracking during the tape and wire manufacturing leading to its failure. Packaging problems are related to the amorphous nature of boron synthesized in our laboratory, so a crystallization treatment was applied to improve crystallinity of B powder. To prevent excessive friction phenomena we synthesized non-stoichiometric MgB2 and using magnesium as lubricant. Our goal is the Jc improvement, but a global physical-chemical characterization was also made to analyze the improvement given by our treatments: this characterization includes X-ray diffraction, resistivity vs. temperature measurement, SEM image, besides magnetic and transport Jc measurements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا