ترغب بنشر مسار تعليمي؟ اضغط هنا

Motivated by some of the recent swampland conjectures, we study the implementation for the late time acceleration of the Universe of a mechanism developed by Anber and Sorbo in the context of primordial inflation, in which an axion field can slowly r oll in a steep potential due to additional friction provided by its coupling to some U(1) gauge field. We first study the realization of this mechanism in N = 2 supergravity models resulting from string compactifications on Calabi--Yau manifolds. We then study the transition between matter domination and the axion domination, and show that indeed the backreaction of the produced gauge field can sufficiently slow the motion of the axion, so to produce the present accelerated era. We finally study the transition from a pre-inflationary matter or radiation domination to primordial inflation. In the regime that we could explore numerically, the evolution is characterized by stages of faster axion roll (and consequent bursts of gauge field amplification) intermitted by stages of slower roll, with a pattern that oscillates about the steady state Anber and Sorbo solution, but that does not appear to relax to it.
We describe a new procedure to obtain consistent backgrounds that uplift vacua and deformations of various maximal gauged supergravities by taking a known solution and performing singular limits along the moduli space of the corresponding 4-dimension al theory. We then apply this procedure to the S^3 x H^{2,2} background that provides the uplift of 4-dimensional Minkowski vacua of maximal supergravity with gauge group [SO(4) x SO(2,2)] $ltimes$ R^{16}. We find that the newly generated vacua are generally only locally geometric and correspond to asymmetric orbifolds, Q-flux backgrounds or combinations thereof. We also provide the uplift to eleven dimensions of all the four-parameter Cremmer-Scherk-Schwarz gaugings.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا