ترغب بنشر مسار تعليمي؟ اضغط هنا

We perform electronic structure and quantum transport studies of dangling bond loops created on H-passivated Si(100) surfaces and connected to carbon nanoribbon leads. We model loops with straight and zigzag topologies as well as with varying lenght with an efficient density-functional based tight-binding electronic structure approach (DFTB) . Varying the length of the loop or the lead coupling position we induce the drastic change in the transmission due to the electron interference. Depending if the constructive or destructive interference within the loop takes place we can noticeably change transport properties by few orders of magnitude. These results propose a way to engineer the closed electronically driven nanocircuits with high transport properties and exploit the interference effects in order to control them.
We have developed an efficient order-N real-space Kubo approach for the calculation of the phonon conductivity which outperforms state-of-the-art alternative implementations based on the Greens function formalism. The method treats efficiently the ti me-dependent propagation of phonon wave packets in real space, and this dynamics is related to the calculation of the thermal conductance. Without loss of generality, we validate the accuracy of the method by comparing the calculated phonon mean free paths in disordered carbon nanotubes (isotope impurities) with other approaches, and further illustrate its upscalability by exploring the thermal conductance features in large width edge-disordered graphene nanoribbons (up to ~20 nm), which is out of the reach of more conventional techniques. We show that edge-disorder is the most important scattering mechanism for phonons in graphene nanoribbons with realistic sizes and thermal conductance can be reduced by a factor of ~10.
The complex mechanisms governing charge migration in DNA oligomers reflect the rich structural and electronic properties of the molecule of life. Controlling the mechanical stability of DNA nanowires in charge transport experiments is a requisite for identifying intrinsic issues responsible for long range charge transfers. By merging density-functional-theory-based calculations and model-Hamiltonian approaches, we have studied DNA quantum transport during the stretching-twisting process of poly(GC) DNA oligomers. During the stretching process, local maxima in the charge transfer integral t between two nearest-neighbor GC pairs arise from the competition between stretching and twisting. This is reflected in local maxima for the conductance, which depend very sensitively on the coupling to the electrodes. In the case of DNA-electrode couplings smaller than t, the conductance versus stretching distance saturates to plateau in agreement with recent experimental observations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا