ترغب بنشر مسار تعليمي؟ اضغط هنا

Phonon transport in large scale carbon-based disordered materials: Implementation of an efficient order-N and real-space Kubo methodology

135   0   0.0 ( 0 )
 نشر من قبل Haldun Sevincli
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have developed an efficient order-N real-space Kubo approach for the calculation of the phonon conductivity which outperforms state-of-the-art alternative implementations based on the Greens function formalism. The method treats efficiently the time-dependent propagation of phonon wave packets in real space, and this dynamics is related to the calculation of the thermal conductance. Without loss of generality, we validate the accuracy of the method by comparing the calculated phonon mean free paths in disordered carbon nanotubes (isotope impurities) with other approaches, and further illustrate its upscalability by exploring the thermal conductance features in large width edge-disordered graphene nanoribbons (up to ~20 nm), which is out of the reach of more conventional techniques. We show that edge-disorder is the most important scattering mechanism for phonons in graphene nanoribbons with realistic sizes and thermal conductance can be reduced by a factor of ~10.



قيم البحث

اقرأ أيضاً

Charge and thermal conductivities are the most important parameters of carbon nanomaterials as candidates for future electronics. In this paper we address the effects of Anderson type disorder in long semiconductor carbon nanotubes (CNTs) to electron charge conductivity and lattice thermal conductivity using the atomistic Green function approach. The electron and phonon transmissions are analyzed as a function of the length of the disordered nanostructures. The thermal conductance as a function of temperature is calculated for different lengths. Analysis of the transmission probabilities as a function of length of the disordered device shows that both electrons and phonons with different energies display different transport regimes, i.e. quasi-ballistic, diffusive and localization regimes coexist. In the light of the results we discuss heating of the semiconductor device in electronic applications.
We report measurements of disordered graphene probed by both a high electric field and a high magnetic field. By apply a high source-drain voltage Vsd, we are able to study the current-voltage relation I-Vsd of our device. With increasing Vsd, a cros sover from the linear I-Vsd regime to the non-linear one, and eventually to activationless-hopping transport occurs. In the activationless-hopping regime, the importance of Coulomb interactions between charged carriers is demonstrated. Moreover, we show that delocalization of carriers which are strongly localized at low T and at small Vsd occurs with the presence of high electric field and perpendicular magnetic field..
78 - G. Cuniberti , J. Yi , M. Porto 2002
We report results on the rectification properties of a carbon nanotube (CNT) ring transistor, contacted by CNT leads, whose novel features have been recently communicated by Watanabe et al. [Appl. Phys. Lett. 78, 2928 (2001)]. This paper contains res ults which are validated by the experimental observations. Moreover, we report on additional features of the transmission of this ring device which are associated with the possibility of breaking the lead inversion symmetry. The linear conductance displays a chessboard-like behavior alternated with anomalous zero-lines which should be directly observable in experiments. We are also able to discriminate in our results structural properties (quasi-onedimensional confinement) from pure topological effects (ring configuration), thus helping to gain physical intuition on the rich ring phenomenology.
184 - S.V. Syzranov , V. Gurarie 2019
Nodal semimetals (e.g. Dirac, Weyl and nodal-line semimetals, graphene, etc.) and systems of pinned particles with power-law interactions (trapped ultracold ions, nitrogen defects in diamonds, spins in solids, etc.) are presently at the centre of att ention of large communities of researchers working in condensed-matter and atomic, molecular and optical physics. Although seemingly unrelated, both classes of systems are abundant with novel fundamental thermodynamic and transport phenomena. In this paper, we demonstrate that low-energy field theories of quasiparticles in semimetals may be mapped exactly onto those of pinned particles with excitations which exhibit power-law hopping. The duality between the two classes of systems, which we establish, allows one to describe the transport and thermodynamics of each class of systems using the results established for the other class. In particular, using the duality mapping, we establish the existence of a novel class of disorder-driven transitions in systems with the power-law hopping $propto1/r^gamma$ of excitations with $d/2<gamma<d$, different from the conventional Anderson-localisation transition. Non-Anderson disorder-driven transitions have been studied broadly for nodal semimetals, but have been unknown, to our knowledge, for systems with long-range hopping (interactions) with $gamma<d$.
We present the numerical tool DECaNT (Diffusion of Excitons in Carbon NanoTubes) that simulates exciton transport in thin films of carbon nanotubes. Through a mesh of nanotubes generated using the Bullet Physics C++ library, excitons move according t o an ensemble Monte Carlo algorithm, with the scattering rates that account for tube chirality, orientation, and distance. We calculate the diffusion tensor from the position--position correlation functions and analyze its anisotropy and dependence on the film composition, morphology, and defect density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا