ترغب بنشر مسار تعليمي؟ اضغط هنا

Prior work on personalized recommendations has focused on exploiting explicit signals from user-specific queries, clicks, likes, and ratings. This paper investigates tapping into a different source of implicit signals of interests and tastes: online chats between users. The paper develops an expressive model and effective methods for personalizing search-based entity recommendations. User models derived from chats augment different methods for re-ranking entity answers for medium-grained queries. The paper presents specific techniques to enhance the user models by capturing domain-specific vocabularies and by entity-based expansion. Experiments are based on a collection of online chats from a controlled user study covering three domains: books, travel, food. We evaluate different configurations and compare chat-based user models against concise user profiles from questionnaires. Overall, these two variants perform on par in terms of NCDG@20, but each has advantages in certain domains.
Prior work on personalizing web search results has focused on considering query-and-click logs to capture users individual interests. For product search, extensive user histories about purchases and ratings have been exploited. However, for general e ntity search, such as for books on specific topics or travel destinations with certain features, personalization is largely underexplored. In this paper, we address personalization of book search, as an exemplary case of entity search, by exploiting sparse user profiles obtained through online questionnaires. We devise and compare a variety of re-ranking methods based on language models or neural learning. Our experiments show that even very sparse information about individuals can enhance the effectiveness of the search results.
Answering complex questions over knowledge bases (KB-QA) faces huge input data with billions of facts, involving millions of entities and thousands of predicates. For efficiency, QA systems first reduce the answer search space by identifying a set of facts that is likely to contain all answers and relevant cues. The most common technique is to apply named entity disambiguation (NED) systems to the question, and retrieve KB facts for the disambiguated entities. This work presents ECQA, an efficient method that prunes irrelevant parts of the search space using KB-aware signals. ECQA is based on top-k query processing over score-ordered lists of KB items that combine signals about lexical matching, relevance to the question, coherence among candidate items, and connectivity in the KB graph. Experiments with two recent QA benchmarks demonstrate the superiority of ECQA over state-of-the-art baselines with respect to answer presence, size of the search space, and runtimes.
ASCENT is a fully automated methodology for extracting and consolidating commonsense assertions from web contents (Nguyen et al., WWW 2021). It advances traditional triple-based commonsense knowledge representation by capturing semantic facets like l ocations and purposes, and composite concepts, i.e., subgroups and related aspects of subjects. In this demo, we present a web portal that allows users to understand its construction process, explore its content, and observe its impact in the use case of question answering. The demo website and an introductory video are both available online.
The rise of personal assistants has made conversational question answering (ConvQA) a very popular mechanism for user-system interaction. State-of-the-art methods for ConvQA over knowledge graphs (KGs) can only learn from crisp question-answer pairs found in popular benchmarks. In reality, however, such training data is hard to come by: users would rarely mark answers explicitly as correct or wrong. In this work, we take a step towards a more natural learning paradigm - from noisy and implicit feedback via question reformulations. A reformulation is likely to be triggered by an incorrect system response, whereas a new follow-up question could be a positive signal on the previous turns answer. We present a reinforcement learning model, termed CONQUER, that can learn from a conversational stream of questions and reformulations. CONQUER models the answering process as multiple agents walking in parallel on the KG, where the walks are determined by actions sampled using a policy network. This policy network takes the question along with the conversational context as inputs and is trained via noisy rewards obtained from the reformulation likelihood. To evaluate CONQUER, we create and release ConvRef, a benchmark with about 11k natural conversations containing around 205k reformulations. Experiments show that CONQUER successfully learns to answer conversational questions from noisy reward signals, significantly improving over a state-of-the-art baseline.
Commonsense knowledge (CSK) about concepts and their properties is useful for AI applications such as robust chatbots. Prior works like ConceptNet, TupleKB and others compiled large CSK collections, but are restricted in their expressiveness to subje ct-predicate-object (SPO) triples with simple concepts for S and monolithic strings for P and O. Also, these projects have either prioritized precision or recall, but hardly reconcile these complementary goals. This paper presents a methodology, called Ascent, to automatically build a large-scale knowledge base (KB) of CSK assertions, with advanced expressiveness and both better precision and recall than prior works. Ascent goes beyond triples by capturing composite concepts with subgroups and aspects, and by refining assertions with semantic facets. The latter are important to express temporal and spatial validity of assertions and further qualifiers. Ascent combines open information extraction with judicious cleaning using language models. Intrinsic evaluation shows the superior size and quality of the Ascent KB, and an extrinsic evaluation for QA-support tasks underlines the benefits of Ascent.
Equipping machines with comprehensive knowledge of the worlds entities and their relationships has been a long-standing goal of AI. Over the last decade, large-scale knowledge bases, also known as knowledge graphs, have been automatically constructed from web contents and text sources, and have become a key asset for search engines. This machine knowledge can be harnessed to semantically interpret textual phrases in news, social media and web tables, and contributes to question answering, natural language processing and data analytics. This article surveys fundamental concepts and practical methods for creating and curating large knowledge bases. It covers models and methods for discovering and canonicalizing entities and their semantic types and organizing them into clean taxonomies. On top of this, the article discusses the automatic extraction of entity-centric properties. To support the long-term life-cycle and the quality assurance of machine knowledge, the article presents methods for constructing open schemas and for knowledge curation. Case studies on academic projects and industrial knowledge graphs complement the survey of concepts and methods.
Predicate constraints of general-purpose knowledge bases (KBs) like Wikidata, DBpedia and Freebase are often limited to subproperty, domain and range constraints. In this demo we showcase CounQER, a system that illustrates the alignment of counting p redicates, like staffSize, and enumerating predicates, like workInstitution^{-1} . In the demonstration session, attendees can inspect these alignments, and will learn about the importance of these alignments for KB question answering and curation. CounQER is available at https://counqer.mpi-inf.mpg.de/spo.
Knowledge Bases (KBs) contain a wealth of structured information about entities and predicates. This paper focuses on set-valued predicates, i.e., the relationship between an entity and a set of entities. In KBs, this information is often represented in two formats: (i) via counting predicates such as numberOfChildren and staffSize, that store aggregated integers, and (ii) via enumerating predicates such as parentOf and worksFor, that store individual set memberships. Both formats are typically complementary: unlike enumerating predicates, counting predicates do not give away individuals, but are more likely informative towards the true set size, thus this coexistence could enable interesting applications in question answering and KB curation. In this paper we aim at uncovering this hidden knowledge. We proceed in two steps. (i) We identify set-valued predicates from a given KB predicates via statistical and embedding-based features. (ii) We link counting predicates and enumerating predicates by a combination of co-occurrence, correlation and textual relatedness metrics. We analyze the prevalence of count information in four prominent knowledge bases, and show that our linking method achieves up to 0.55 F1 score in set predicate identification versus 0.40 F1 score of a random selection, and normalized discounted gains of up to 0.84 at position 1 and 0.75 at position 3 in relevant predicate alignments. Our predicate alignments are showcased in a demonstration system available at https://counqer.mpi-inf.mpg.de/spo.
Knowledge bases (KBs) about notable entities and their properties are an important asset in applications such as search, question answering and dialogue. All popular KBs capture virtually only positive statements, and abstain from taking any stance o n statements not stored in the KB. This paper makes the case for explicitly stating salient statements that do not hold. Negative statements are useful to overcome limitations of question answering systems that are mainly geared for positive questions; they can also contribute to informative summaries of entities. Due to the abundance of such invalid statements, any effort to compile them needs to address ranking by saliency. We present a statisticalinference method for compiling and ranking negative statements, based on expectations from positive statements of related entities in peer groups. Experimental results, with a variety of datasets, show that the method can effectively discover notable negative statements, and extrinsic studies underline their usefulness for entity summarization. Datasets and code are released as resources for further research.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا