ترغب بنشر مسار تعليمي؟ اضغط هنا

The distribution of entanglement of typical multiparty quantum states is not uniform over the range of the measure utilized for quantifying the entanglement. We intend to find the response of quenched disorder in the state parameters on this non-unif ormity for typical states. We find that the typical entanglement, quenched averaged over the disorder, is taken farther away from uniformity, as quantified by decreased standard deviation, in comparison to the clean case. The feature is seemingly generic, as we see it for Gaussian and non-Gaussian disorder distributions, for varying strengths of the disorder, and for disorder insertions in one and several state parameters. The non-Gaussian distributions considered are uniform and Cauchy-Lorentz. Two- and three-qubit pure state Haar-uniform generations are considered for the typical state productions. We also consider noi
We compute concurrence, a measure of bipartite entanglement, of the first excited state of the $1$-D Heisenberg frustrated $J_1$-$J_2$ spin-chain and observe a sudden change in the entanglement of the eigen state near the coupling strength $alpha=J_2 /J_1approx0.241$, where a quantum phase transition from spin-fluid phase to dimer phase has been previously reported. We numerically observe this phenomena for spin-chain with $8$ sites to $16$ sites, and the value of $alpha$ at which the change in entanglement is observed asymptotically tends to a value $alpha_capprox0.24116$. We have calculated the finite-size scaling exponents for spin chains with even and odd spins. It may be noted that bipartite as well as multipartite entanglement measures applied on the ground state of the system, fail to detect any quantum phase transition from the gapless to the gapped phase in the $1$-D Heisenberg frustrated $J_1$-$J_2$ spin-chain. Furthermore, we measure bipartite entanglement of first excited states for other spin models like $2$-D Heisenberg $J_1$-$J_2$ model and Shastry-Sutherland model and find similar indications of quantum phase transitions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا