ترغب بنشر مسار تعليمي؟ اضغط هنا

Fine-tuning from pre-trained ImageNet models has been a simple, effective, and popular approach for various computer vision tasks. The common practice of fine-tuning is to adopt a default hyperparameter setting with a fixed pre-trained model, while b oth of them are not optimized for specific tasks and time constraints. Moreover, in cloud computing or GPU clusters where the tasks arrive sequentially in a stream, faster online fine-tuning is a more desired and realistic strategy for saving money, energy consumption, and CO2 emission. In this paper, we propose a joint Neural Architecture Search and Online Adaption framework named NASOA towards a faster task-oriented fine-tuning upon the request of users. Specifically, NASOA first adopts an offline NAS to identify a group of training-efficient networks to form a pretrained model zoo. We propose a novel joint block and macro-level search space to enable a flexible and efficient search. Then, by estimating fine-tuning performance via an adaptive model by accumulating experience from the past tasks, an online schedule generator is proposed to pick up the most suitable model and generate a personalized training regime with respect to each desired task in a one-shot fashion. The resulting model zoo is more training efficient than SOTA models, e.g. 6x faster than RegNetY-16GF, and 1.7x faster than EfficientNetB3. Experiments on multiple datasets also show that NASOA achieves much better fine-tuning results, i.e. improving around 2.1% accuracy than the best performance in RegNet series under various constraints and tasks; 40x faster compared to the BOHB.
Few-shot segmentation aims to train a segmentation model that can fast adapt to novel classes with few exemplars. The conventional training paradigm is to learn to make predictions on query images conditioned on the features from support images. Prev ious methods only utilized the semantic-level prototypes of support images as the conditional information. These methods cannot utilize all pixel-wise support information for the query predictions, which is however critical for the segmentation task. In this paper, we focus on utilizing pixel-wise relationships between support and target images to facilitate the few-shot semantic segmentation task. We design a novel Cycle-Consistent Transformer (CyCTR) module to aggregate pixel-wise support features into query ones. CyCTR performs cross-attention between features from different images, i.e. support and query images. We observe that there may exist unexpected irrelevant pixel-level support features. Directly performing cross-attention may aggregate these features from support to query and bias the query features. Thus, we propose using a novel cycle-consistent attention mechanism to filter out possible harmful support features and encourage query features to attend to the most informative pixels from support images. Experiments on all few-shot segmentation benchmarks demonstrate that our proposed CyCTR leads to remarkable improvement compared to previous state-of-the-art methods. Specifically, on Pascal-$5^i$ and COCO-$20^i$ datasets, we achieve 66.6% and 45.6% mIoU for 5-shot segmentation, outperforming previous state-of-the-art by 4.6% and 7.1% respectively.
Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models. For object detection, the well-established classification and regression loss functions have been carefully des igned by considering diverse learning challenges. Inspired by the recent progress in network architecture search, it is interesting to explore the possibility of discovering new loss function formulations via directly searching the primitive operation combinations. So that the learned losses not only fit for diverse object detection challenges to alleviate huge human efforts, but also have better alignment with evaluation metric and good mathematical convergence property. Beyond the previous auto-loss works on face recognition and image classification, our work makes the first attempt to discover new loss functions for the challenging object detection from primitive operation levels. We propose an effective convergence-simulation driven evolutionary search algorithm, called CSE-Autoloss, for speeding up the search progress by regularizing the mathematical rationality of loss candidates via convergence property verification and model optimization simulation. CSE-Autoloss involves the search space that cover a wide range of the possible variants of existing losses and discovers best-searched loss function combination within a short time (around 1.5 wall-clock days). We conduct extensive evaluations of loss function search on popular detectors and validate the good generalization capability of searched losses across diverse architectures and datasets. Our experiments show that the best-discovered loss function combinations outperform default combinations by 1.1% and 0.8% in terms of mAP for two-stage and one-stage detectors on COCO respectively. Our searched losses are available at https://github.com/PerdonLiu/CSE-Autoloss.
Panoptic segmentation that unifies instance segmentation and semantic segmentation has recently attracted increasing attention. While most existing methods focus on designing novel architectures, we steer toward a different perspective: performing au tomated multi-loss adaptation (named Ada-Segment) on the fly to flexibly adjust multiple training losses over the course of training using a controller trained to capture the learning dynamics. This offers a few advantages: it bypasses manual tuning of the sensitive loss combination, a decisive factor for panoptic segmentation; it allows to explicitly model the learning dynamics, and reconcile the learning of multiple objectives (up to ten in our experiments); with an end-to-end architecture, it generalizes to different datasets without the need of re-tuning hyperparameters or re-adjusting the training process laboriously. Our Ada-Segment brings 2.7% panoptic quality (PQ) improvement on COCO val split from the vanilla baseline, achieving the state-of-the-art 48.5% PQ on COCO test-dev split and 32.9% PQ on ADE20K dataset. The extensive ablation studies reveal the ever-changing dynamics throughout the training process, necessitating the incorporation of an automated and adaptive learning strategy as presented in this paper.
Panoptic segmentation is posed as a new popular test-bed for the state-of-the-art holistic scene understanding methods with the requirement of simultaneously segmenting both foreground things and background stuff. The state-of-the-art panoptic segmen tation network exhibits high structural complexity in different network components, i.e. backbone, proposal-based foreground branch, segmentation-based background branch, and feature fusion module across branches, which heavily relies on expert knowledge and tedious trials. In this work, we propose an efficient, cooperative and highly automated framework to simultaneously search for all main components including backbone, segmentation branches, and feature fusion module in a unified panoptic segmentation pipeline based on the prevailing one-shot Network Architecture Search (NAS) paradigm. Notably, we extend the common single-task NAS into the multi-component scenario by taking the advantage of the newly proposed intra-modular search space and problem-oriented inter-modular search space, which helps us to obtain an optimal network architecture that not only performs well in both instance segmentation and semantic segmentation tasks but also be aware of the reciprocal relations between foreground things and background stuff classes. To relieve the vast computation burden incurred by applying NAS to complicated network architectures, we present a novel path-priority greedy search policy to find a robust, transferrable architecture with significantly reduced searching overhead. Our searched architecture, namely Auto-Panoptic, achieves the new state-of-the-art on the challenging COCO and ADE20K benchmarks. Moreover, extensive experiments are conducted to demonstrate the effectiveness of path-priority policy and transferability of Auto-Panoptic across different datasets. Codes and models are available at: https://github.com/Jacobew/AutoPanoptic.
Recent researches on panoptic segmentation resort to a single end-to-end network to combine the tasks of instance segmentation and semantic segmentation. However, prior models only unified the two related tasks at the architectural level via a multi- branch scheme or revealed the underlying correlation between them by unidirectional feature fusion, which disregards the explicit semantic and co-occurrence relations among objects and background. Inspired by the fact that context information is critical to recognize and localize the objects, and inclusive object details are significant to parse the background scene, we thus investigate on explicitly modeling the correlations between object and background to achieve a holistic understanding of an image in the panoptic segmentation task. We introduce a Bidirectional Graph Reasoning Network (BGRNet), which incorporates graph structure into the conventional panoptic segmentation network to mine the intra-modular and intermodular relations within and between foreground things and background stuff classes. In particular, BGRNet first constructs image-specific graphs in both instance and semantic segmentation branches that enable flexible reasoning at the proposal level and class level, respectively. To establish the correlations between separate branches and fully leverage the complementary relations between things and stuff, we propose a Bidirectional Graph Connection Module to diffuse information across branches in a learnable fashion. Experimental results demonstrate the superiority of our BGRNet that achieves the new state-of-the-art performance on challenging COCO and ADE20K panoptic segmentation benchmarks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا