ﻻ يوجد ملخص باللغة العربية
Few-shot segmentation aims to train a segmentation model that can fast adapt to novel classes with few exemplars. The conventional training paradigm is to learn to make predictions on query images conditioned on the features from support images. Previous methods only utilized the semantic-level prototypes of support images as the conditional information. These methods cannot utilize all pixel-wise support information for the query predictions, which is however critical for the segmentation task. In this paper, we focus on utilizing pixel-wise relationships between support and target images to facilitate the few-shot semantic segmentation task. We design a novel Cycle-Consistent Transformer (CyCTR) module to aggregate pixel-wise support features into query ones. CyCTR performs cross-attention between features from different images, i.e. support and query images. We observe that there may exist unexpected irrelevant pixel-level support features. Directly performing cross-attention may aggregate these features from support to query and bias the query features. Thus, we propose using a novel cycle-consistent attention mechanism to filter out possible harmful support features and encourage query features to attend to the most informative pixels from support images. Experiments on all few-shot segmentation benchmarks demonstrate that our proposed CyCTR leads to remarkable improvement compared to previous state-of-the-art methods. Specifically, on Pascal-$5^i$ and COCO-$20^i$ datasets, we achieve 66.6% and 45.6% mIoU for 5-shot segmentation, outperforming previous state-of-the-art by 4.6% and 7.1% respectively.
A few-shot semantic segmentation model is typically composed of a CNN encoder, a CNN decoder and a simple classifier (separating foreground and background pixels). Most existing methods meta-learn all three model components for fast adaptation to a n
Reducing the amount of supervision required by neural networks is especially important in the context of semantic segmentation, where collecting dense pixel-level annotations is particularly expensive. In this paper, we address this problem from a ne
The application of deep learning to medical image segmentation has been hampered due to the lack of abundant pixel-level annotated data. Few-shot Semantic Segmentation (FSS) is a promising strategy for breaking the deadlock. However, a high-performin
Few-shot semantic segmentation models aim to segment images after learning from only a few annotated examples. A key challenge for them is overfitting. Prior works usually limit the overall model capacity to alleviate overfitting, but the limited cap
Few-shot semantic segmentation aims at learning to segment a target object from a query image using only a few annotated support images of the target class. This challenging task requires to understand diverse levels of visual cues and analyze fine-g