ترغب بنشر مسار تعليمي؟ اضغط هنا

The input to the NP-hard Point Line Cover problem (PLC) consists of a set $P$ of $n$ points on the plane and a positive integer $k$, and the question is whether there exists a set of at most $k$ lines which pass through all points in $P$. A simple po lynomial-time reduction reduces any input to one with at most $k^2$ points. We show that this is essentially tight under standard assumptions. More precisely, unless the polynomial hierarchy collapses to its third level, there is no polynomial-time algorithm that reduces every instance $(P,k)$ of PLC to an equivalent instance with $O(k^{2-epsilon})$ points, for any $epsilon>0$. This answers, in the negative, an open problem posed by Lokshtanov (PhD Thesis, 2009). Our proof uses the machinery for deriving lower bounds on the size of kernels developed by Dell and van Melkebeek (STOC 2010). It has two main ingredients: We first show, by reduction from Vertex Cover, that PLC---conditionally---has no kernel of total size $O(k^{2-epsilon})$ bits. This does not directly imply the claimed lower bound on the number of points, since the best known polynomial-time encoding of a PLC instance with $n$ points requires $omega(n^{2})$ bits. To get around this we build on work of Goodman et al. (STOC 1989) and devise an oracle communication protocol of cost $O(nlog n)$ for PLC; its main building block is a bound of $O(n^{O(n)})$ for the order types of $n$ points that are not necessarily in general position, and an explicit algorithm that enumerates all possible order types of n points. This protocol and the lower bound on total size together yield the stated lower bound on the number of points. While a number of essentially tight polynomial lower bounds on total sizes of kernels are known, our result is---to the best of our knowledge---the first to show a nontrivial lower bound for structural/secondary parameters.
The pathwidth of a graph is a measure of how path-like the graph is. Given a graph G and an integer k, the problem of finding whether there exist at most k vertices in G whose deletion results in a graph of pathwidth at most one is NP- complete. We i nitiate the study of the parameterized complexity of this problem, parameterized by k. We show that the problem has a quartic vertex-kernel: We show that, given an input instance (G = (V, E), k); |V| = n, we can construct, in polynomial time, an instance (G, k) such that (i) (G, k) is a YES instance if and only if (G, k) is a YES instance, (ii) G has O(k^{4}) vertices, and (iii) k leq k. We also give a fixed parameter tractable (FPT) algorithm for the problem that runs in O(7^{k} k cdot n^{2}) time.
We study the recently introduced Connected Feedback Vertex Set (CFVS) problem from the view-point of parameterized algorithms. CFVS is the connected variant of the classical Feedback Vertex Set problem and is defined as follows: given a graph G=(V,E) and an integer k, decide whether there exists a subset F of V, of size at most k, such that G[V F] is a forest and G[F] is connected. We show that Connected Feedback Vertex Set can be solved in time $O(2^{O(k)}n^{O(1)})$ on general graphs and in time $O(2^{O(sqrt{k}log k)}n^{O(1)})$ on graphs excluding a fixed graph H as a minor. Our result on general undirected graphs uses as subroutine, a parameterized algorithm for Group Steiner Tree, a well studied variant of Steiner Tree. We find the algorithm for Group Steiner Tree of independent interest and believe that it will be useful for obtaining parameterized algorithms for other connectivity problems.
We show that the k-Dominating Set problem is fixed parameter tractable (FPT) and has a polynomial kernel for any class of graphs that exclude K_{i,j} as a subgraph, for any fixed i, j >= 1. This strictly includes every class of graphs for which this problem has been previously shown to have FPT algorithms and/or polynomial kernels. In particular, our result implies that the problem restricted to bounded- degenerate graphs has a polynomial kernel, solving an open problem posed by Alon and Gutner.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا