ترغب بنشر مسار تعليمي؟ اضغط هنا

We provide an overview of 21cm tomography of the Cosmic Dawn and Epoch of Reionization as possible with SKA-Low. We show why tomography is essential for studying CD/EoR and present the scales which can be imaged at different frequencies for the diffe rent phases of SKA- Low. Next we discuss the different ways in which tomographic data can be analyzed. We end with an overview of science questions which can only be answered by tomography, ranging from the characterization of individual objects to understanding the global processes shaping the Universe during the CD/EoR
61 - Suman Majumdar 2014
We present a detailed comparison of three different simulations of the epoch of reionization (EoR). The radiative transfer simulation (${rm C}^2$-RAY) among them is our benchmark. Radiative transfer codes can produce realistic results, but are comput ationally expensive. We compare it with two semi-numerical techniques: one using the same halos as ${rm C}^2$-RAY as its sources (Sem-Num), and one using a conditional Press-Schechter scheme (CPS+GS). These are vastly more computationally efficient than ${rm C}^2$-RAY, but use more simplistic physical assumptions. We evaluate these simulations in terms of their ability to reproduce the history and morphology of reionization. We find that both Sem-Num and CPS+GS can produce an ionization history and morphology that is very close to ${rm C}^2$-RAY, with Sem-Num performing slightly better compared to CPS+GS. We also study different redshift space observables of the 21-cm signal from EoR: the variance, power spectrum and its various angular multipole moments. We find that both semi-numerical models perform reasonably well in predicting these observables at length scales relevant for present and future experiments. However, Sem-Num performs slightly better than CPS+GS in producing the reionization history, which is necessary for interpreting the future observations.
64 - Ilian T. Iliev 2013
We present the largest-volume (425 Mpc/h=607 Mpc on a side) full radiative transfer simulation of cosmic reionization to date. We show that there is significant additional power in density fluctuations at very large scales. We systematically investig ate the effects this additional power has on the progress, duration and features of reionization, as well as on selected reionization observables. We find that comoving simulation volume of ~100 Mpc/h per side is sufficient for deriving a convergent mean reionization history, but that the reionization patchiness is significantly underestimated. We use jackknife splitting to quantify the convergence of reionization properties with simulation volume for both mean-density and variable-density sub-regions. We find that sub-volumes of ~100 Mpc/h per side or larger yield convergent reionization histories, except for the earliest times, but smaller volumes of ~50 Mpc/h or less are not well converged at any redshift. Reionization history milestones show significant scatter between the sub-volumes, of Delta z=0.6-1 for ~50 Mpc/h volumes, decreasing to Delta z=0.3-0.5 for ~100 Mpc/h volumes, and $Delta z$~0.1 for ~200 Mpc/h volumes. If we only consider mean-density sub-regions the scatter decreases, but remains at Delta z~0.1-0.2 for the different size sub-volumes. Consequently, many potential reionization observables like 21-cm rms, 21-cm PDF skewness and kurtosis all show good convergence for volumes of ~200 Mpc/h, but retain considerable scatter for smaller volumes. In contrast, the three-dimensional 21-cm power spectra at large scales (k<0.25 h/Mpc) do not fully converge for any sub-volume size. These additional large-scale fluctuations significantly enhance the 21-cm fluctuations, which should improve the prospects of detection considerably, given the lower foregrounds and greater interferometer sensitivity at higher frequencies. (abridged)
The Square Kilometre Array (SKA) will have a low frequency component (SKA-low) which has as one of its main science goals the study of the redshifted 21cm line from the earliest phases of star and galaxy formation in the Universe. This 21cm signal pr ovides a new and unique window on both the formation of the first stars and accreting black holes and the later period of substantial ionization of the intergalactic medium. The signal will teach us fundamental new things about the earliest phases of structure formation, cosmology and even has the potential to lead to the discovery of new physical phenomena. Here we present a white paper with an overview of the science questions that SKA-low can address, how we plan to tackle these questions and what this implies for the basic design of the telescope.
We present a study of the impact of a bright quasar on the redshifted 21cm signal during the Epoch of Reionization (EoR). Using three different cosmological radiative transfer simulations, we investigate if quasars are capable of substantially changi ng the size and morphology of the H II regions they are born in. We choose stellar and quasar luminosities in a way that is favourable to seeing such an effect. We find that even the most luminous of our quasar models is not able to increase the size of its native H II region substantially beyond those of large H II regions produced by clustered stellar sources alone. However, the quasar H II region is found to be more spherical. We next investigate the prospects of detecting such H II regions in the redshifted 21cm data from the Low Frequency Array (LOFAR) by means of a matched filter technique. We find that H II regions with radii ~ 25 comoving Mpc or larger should have a sufficiently high detection probability for 1200 hours of integration time. Although the matched filter can in principle distinguish between more and less spherical regions, we find that when including realistic system noise this distinction can no longer be made. The strong foregrounds are found not to pose a problem for the matched filter technique. We also demonstrate that when the quasar position is known, the redshifted 21cm data can still be used to set upper limits on the ionizing photon rate of the quasar. If both the quasar position and its luminosity are known, the redshifted 21 cm data can set new constrains on quasar lifetimes.
360 - Kanan K. Datta 2011
Observations of redshifted 21-cm radiation from neutral hydrogen during the epoch of reionization (EoR) are considered to constitute the most promising tool to probe that epoch. One of the major goals of the first generation of low frequency radio te lescopes is to measure the 3D 21-cm power spectrum. However, the 21-cm signal could evolve substantially along the line of sight (LOS) direction of an observed 3D volume, since the received signal from different planes transverse to the LOS originated from different look-back times and could therefore be statistically different. Using numerical simulations we investigate this so-called light cone effect on the spherically averaged 3D 21-cm power spectrum. For this version of the power spectrum, we find that the effect mostly `averages out and observe a smaller change in the power spectrum compared to the amount of evolution in the mean 21-cm signal and its rms variations along the LOS direction. Nevertheless, changes up to 50% at large scales are possible. In general the power is enhanced/suppressed at large/small scales when the effect is included. The cross-over mode below/above which the power is enhanced/suppressed moves toward larger scales as reionization proceeds. When considering the 3D power spectrum we find it to be anisotropic at the late stages of reionization and on large scales. The effect is dominated by the evolution of the ionized fraction of hydrogen during reionization and including peculiar velocities hardly changes these conclusions. We present simple analytical models which explain qualitatively all the features we see in the simulations.
147 - Ilian T. Iliev 2011
The prospect of detecting the first galaxies by observing their impact on the intergalactic medium as they reionized it during the first billion years leads us to ask whether such indirect observations are capable of diagnosing which types of galaxie s were most responsible for reionization. We attempt to answer this by considering a set of large-scale radiative transfer simulations of reionization in sufficiently large volumes to make statistically meaningful predictions of observable signatures, while also directly resolving all atomically-cooling halos down to 10^8 M_solar. We focus here on predictions of the 21-cm background, to see if upcoming observations are capable of distinguishing a universe ionized primarily by high-mass halos from one in which both high-mass and low-mass halos are responsible, and to see how these results depend upon the uncertain source efficiencies. We find that 21-cm fluctuation power spectra observed by the first generation EoR/21-cm radio interferometer arrays should be able to distinguish the case of reionization by high-mass halos alone from that by both high- and low-mass halos, together. Some reionization scenarios yield very similar power spectra and rms evolution and thus can only be discriminated by their different mean reionization history and 21-cm PDF distributions. We find that the skewness of the 21-cm PDF distribution smoothed over LOFAR-like window shows a clear feature correlated with the rise of the rms due to patchiness. Measurements of the mean photoionization rates are sensitive to the average density of the regions being studied and therefore could be strongly skewed in certain cases. (abridged)
185 - Yi Mao 2011
The peculiar velocity of the intergalactic gas responsible for the cosmic 21cm background from the epoch of reionization and beyond introduces an anisotropy in the three-dimensional power spectrum of brightness temperature fluctuations. Measurement o f this anisotropy by future 21cm surveys is a promising tool for separating cosmology from 21cm astrophysics. However, previous attempts to model the signal have often neglected peculiar velocity or only approximated it crudely. This paper re-examines the effects of peculiar velocity on the 21cm signal in detail, improving upon past treatment and addressing several issues for the first time. (1) We show that properly accounting for finite optical depth eliminates the unphysical divergence of 21cm brightness temperature in overdense regions of the IGM found by previous work that employed the usual optically-thin approximation. (2) The approximation made previously to circumvent the diverging brightness temperature problem by capping velocity gradient can misestimate the power spectrum on all scales. (3) The observed power spectrum in redshift-space remains finite even in the optically-thin approximation if one properly accounts for the redshift-space distortion. However, results that take full account of finite optical depth show that this approximation is only accurate in the limit of high spin temperature. (4) The linear theory for redshift-space distortion results in ~30% error in the observationally relevant wavenumber range, at the 50% ionized epoch. (5) We describe and test two numerical schemes to calculate the 21cm signal from reionization simulations to incorporate peculiar velocity effects in the optically-thin approximation accurately. One is particle-based, the other grid-based, and while the former is most accurate, we demonstrate that the latter is computationally more efficient and can achieve sufficient accuracy. [Abridged]
We use the results of large-scale simulations of reionization to explore methods for characterizing the topology and sizes of HII regions during reionization. We use four independent methods for characterizing the sizes of ionized regions. Three of t hem give us a full size distribution: the friends-of-friends (FOF) method, the spherical average method (SPA) and the power spectrum (PS) of the ionized fraction. These latter three methods are complementary: While the FOF method captures the size distribution of the small scale H II regions, which contribute only a small amount to the total ionization fraction, the spherical average method provides a smoothed measure for the average size of the H II regions constituting the main contribution to the ionized fraction, and the power spectrum does the same while retaining more details on the size distribution. Our fourth method for characterizing the sizes of the H II regions is the average size which results if we divide the total volume of the H II regions by their total surface area, (i.e. 3V/A), computed in terms of the ratio of the corresponding Minkowski functionals of the ionized fraction field. To characterize the topology of the ionized regions, we calculate the evolution of the Euler Characteristic. We find that the evolution of the topology during the first half of reionization is consistent with inside-out reionization of a Gaussian density field. We use these techniques to investigate the dependence of size and topology on some basic source properties, such as the halo mass-to-light ratio, susceptibility of haloes to negative feedback from reionization, and the minimum halo mass for sources to form. We find that suppression of ionizing sources within ionized regions slows the growth of H II regions, and also changes their size distribution. Additionally, the topology of simulations including suppression is more complex. (abridged)
233 - Ilian T. Iliev 2007
Direct detection of the Dark Ages and the Epoch of Reionization (EOR) is among the main scientific objectives of all current and future low-frequency radio facilities. In this paper we summarize and discuss recent results, based on state-of-the-art numerical simulations, regarding the fundamental EOR properties and its observability with current and future radio arrays, like the Giant Metrewave Radio Telescope (GMRT), the Low Frequency Array (LOFAR), the 21-CM Array (21CMA), the Murchison Widefield Array (MWA) and the Square Kilometre Array (SKA). Results show that the optimal observational frequencies for statistical detection are 140-160 MHz. The signals are strongly non-Gaussian at late times. The correlation widths between 21-cm maps at neighbouring frequencies are short, of order 300-800 kHz, which should help with the cleaning of the strong foregrounds. Direct comparison of the resolutions and expected sensitivities of GMRT and MWA indicate that their optimal sensitivity ranges are similar, at scales k~0.2-0.4 h/Mpc, however, all else being equal the former should require shorter integration times due to its significantly larger collecting area.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا