ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-photon absorption (TPA) is of fundamental importance in super-resolution imaging and spectroscopy. Its nonlinear character allows for the prospect of using quantum resources, such as entanglement, to improve measurement precision or to gain new i nformation on, e.g., ultrafast molecular dynamics. Here, we establish the metrological properties of nonclassical squeezed light sources for precision measurements of TPA cross sections. We find that there is no fundamental limit for the precision achievable with squeezed states in the limit of very small cross sections. Considering the most relevant measurement strategies -- namely photon counting and quadrature measurements -- we determine the quantum advantage provided by squeezed states as compared to coherent states. We find that squeezed states outperform the precision achievable by coherent states when performing quadrature measurements, which provide improved scaling of the Fisher information with respect to the mean photon number $sim n^4$. Due to the interplay of the incoherent nature and the nonlinearity of the TPA process, unusual scaling can also be obtained with coherent states, which feature a $sim n^3$ scaling in both quadrature and photon-counting measurements.
Phase-sensitive optical parametric amplification of squeezed states helps to overcome detection loss and noise and thus increase the robustness of sub-shot-noise sensing. Because such techniques, e.g., imaging and spectroscopy, operate with multimode light, multimode amplification is required. Here we find the optimal methods for multimode phase-sensitive amplification and verify them in an experiment where a pumped second-order nonlinear crystal is seeded with a Gaussian coherent beam. Phase-sensitive amplification is obtained by tightly focusing the seed into the crystal, rather than seeding with close-to-plane waves. This suggests that phase-sensitive amplification of sub-shot-noise images should be performed in the near field. Similar recipe can be formulated for the time and frequency, which makes this work relevant for quantum-enhanced spectroscopy.
For a squeezing-enhanced SU(2) interferometer, we theoretically investigate the possibility to broaden the phase range of sub-shot-noise sensitivity. We show that this goal can be achieved by implementing detection in both output ports, with the opti mal combination of the detectors outputs, leading to a phase sensitivity independent of the interferometer operation point. Provided that each detector is preceded by a phase-sensitive amplifier, this sensitivity could be also tolerant to the detection loss.
We propose a method for finding 2D spatial modes of thermal field through a direct measurement of the field intensity and an offline analysis of its spatial fluctuations. Using this method, in a simple and efficient way we reconstruct the modes of a multimode fiber and the spatial Schmidt modes of squeezed vacuum generated via high-gain parametric down conversion. The reconstructed shapes agree with the theoretical results.
We demonstrate optical coherence tomography based on an SU(1,1) nonlinear interferometer with high-gain parametric down-conversion. For imaging and sensing applications, this scheme promises to outperform previous experiments working at low parametri c gain, since higher photon fluxes provide lower integration times for obtaining high-quality images. In this way one can avoid using single-photon detectors or CCD cameras with very high sensitivities, and standard spectrometers can be used instead. Other advantages are: higher sensitivity to small loss and amplification before detection, so that the detected light power considerably exceeds the probing one.
Among the known resources of quantum metrology, one of the most practical and efficient is squeezing. Squeezed states of atoms and light improve the sensing of the phase, magnetic field, polarization, mechanical displacement. They promise to consider ably increase signal-to-noise ratio in imaging and spectroscopy, and are already used in real-life gravitational-wave detectors. But despite being more robust than other states, they are still very fragile, which narrows the scope of their application. In particular, squeezed states are useless in measurements where the detection is inefficient or the noise is high. Here, we experimentally demonstrate a remedy against loss and noise: strong noiseless amplification before detection. This way, we achieve loss-tolerant operation of an interferometer fed with squeezed and coherent light. With only 50% detection efficiency and with noise exceeding the level of squeezed light more than 50 times, we overcome the shot-noise limit by 6~dB. Sub-shot-noise phase sensitivity survives up to 87% loss. Application of this technique to other types of optical sensing and imaging promises a full use of quantum resources in these fields.
We study the spatial mode content at the output of a wide-field SU(1,1) interferometer, i.e. a nonlinear interferometer comprising two coherently-pumped spatially-multimode optical parametric amplifiers placed in sequence with a focusing element in b etween. This device is expected to provide a phase sensitivity below the shot-noise limit for multiple modes over a broad angular range. To reconstruct the spatial modes and their weights, we implement a simple method based on the acquisition of only intensity distributions. The eigenmode decomposition of the field is obtained through the measurement of the covariance of intensities at different spatial points. We investigate both the radial and azimuthal (orbital angular momentum) modes and show that their total number is large enough to enable applications of the interferometer in spatially-resolved phase measurements.
Light beams with orbital angular momentum (OAM) are convenient carriers of quantum information. They can be also used for imparting rotational motion to particles and provide high resolution in imaging. Due to the conservation of OAM in parametric do wn-conversion (PDC), signal and idler photons generated at low gain have perfectly anti-correlated OAM values. It is interesting to study the OAM properties of high-gain PDC, where the same OAM modes can be populated with large, but correlated, numbers of photons. Here we investigate the OAM spectrum of high-gain PDC and show that the OAM mode content can be controlled by varying the pump power and the configuration of the source. In our experiment, we use a source consisting of two nonlinear crystals separated by an air gap. We discuss the OAM properties of PDC radiation emitted by this source and suggest possible modifications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا