ترغب بنشر مسار تعليمي؟ اضغط هنا

Through a combination of experimental techniques we show that the topmost layer of the topo- logical insulator TlBiSe$_2$ as prepared by cleavage is formed by irregularly shaped Tl islands at cryogenic temperatures and by mobile Tl atoms at room temp erature. No trivial surface states are observed in photoemission at low temperatures, which suggests that these islands can not be re- garded as a clear surface termination. The topological surface state is, however, clearly resolved in photoemission experiments. This is interpreted as a direct evidence of its topological self-protection and shows the robust nature of the Dirac cone like surface state. Our results can also help explain the apparent mass acquisition in S-doped TlBiSe$_2$.
We identify the multi-layered compound GeBi4Te7 to be a topological insulator with a freestanding Dirac point, slightly above the valence band maximum, using angle-resolved photoemission spectroscopy (ARPES) measurements. The spin polarization satisf fies the time reversal symmetry of the surface states, visible in spin-resolved ARPES. For increasing Sb content in GeBi(4-x)SbxTe7 we observe a transition from n- to p-type in bulk sensitive Seebeck coefficient measurements at a doping of x = 0.6. In surface sensitive ARPES measurements a rigid band shift is observed with Sb doping, accompanied by a movement of the Dirac point towards the Fermi level. Between x = 0.8 and x = 1 the Fermi level crosses the band gap, changing the surface transport regime. This difference of the n- to p-type transition between the surface region and the bulk is caused by band bending effects which are also responsible for a non-coexistence of insulating phases in the bulk and in the near surface region.
BiTeI has a layered and non-centrosymmetric structure where strong spin-orbit interaction leads to a giant spin splitting in the bulk bands. Here we present high-resolution angle-resolved photoemission (ARPES) data in the UV and soft x-ray regime tha t clearly disentangle the surface from the bulk electronic structure. Spin-resolved UV-ARPES measurements on opposite, non-equivalent surfaces show identical spin structures, thus clarifying the surface state character. Soft x-ray ARPES data clearly reveal the spindle-torus shape of the bulk Fermi surface, induced by the spin-orbit interaction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا