ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface and bulk Fermiology and band dispersion in non-centrosymmetric BiTeI

117   0   0.0 ( 0 )
 نشر من قبل Gabriel Landolt
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

BiTeI has a layered and non-centrosymmetric structure where strong spin-orbit interaction leads to a giant spin splitting in the bulk bands. Here we present high-resolution angle-resolved photoemission (ARPES) data in the UV and soft x-ray regime that clearly disentangle the surface from the bulk electronic structure. Spin-resolved UV-ARPES measurements on opposite, non-equivalent surfaces show identical spin structures, thus clarifying the surface state character. Soft x-ray ARPES data clearly reveal the spindle-torus shape of the bulk Fermi surface, induced by the spin-orbit interaction.

قيم البحث

اقرأ أيضاً

We performed angle-resolved photoelectron spectroscopy of the Bi(111) surface to demonstrate that this surface support edge states of non-trivial topology. Along the $bar{Gamma}bar{M}$-direction of the surface Brillouin zone, a surface-state band dis perses from the projected bulk valence bands at $bar{Gamma}$ to the conduction bands at $bar{M}$ continuously, indicating the non-trivial topological order of three-dimensional Bi bands. We ascribe this finding to the absence of band inversion at the $L$ point of the bulk Bi Brillouin zone. According to our analysis, a modification of tight-binding parameters can account for the non-trivial band structure of Bi without any other significant change on other physical properties.
Angle-resolved photoemission spectroscopy (ARPES) is used to study the band dispersion and the quasiparticle scattering rates in two ferropnictides systems. Our ARPES results show linear-in-energy dependent scattering rates which are constant in a wi de range of control parameter and which depend on the orbital character of the bands. We demonstrate that the linear energy dependence gives rise to weakly dispersing band with a strong mass enhancement when the band maximum crosses the chemical potential. In the superconducting phase the related small effective Fermi energy favors a Bardeen-Cooper-Schrieffer (BCS),cite{Bardeen1957}-Bose-Einstein (BE),cite{Bose1924} crossover state.
85 - Haowei Xu , Hua Wang , Jian Zhou 2020
Spin current generators are critical components for spintronics-based information processing. In this work, we theoretically and computationally investigate the bulk spin photovoltaic (BSPV) effect for creating DC spin current under light illuminatio n. The only requirement for BPSV is inversion symmetry breaking, thus it applies to a broad range of materials and can be readily integrated with existing semiconductor technologies. The BSPV effect is a cousin of the bulk photovoltaic (BPV) effect, whereby a DC charge current is generated under light. Thanks to the different selection rules on spin and charge currents, a pure spin current can be realized if the system possesses mirror symmetry or inversion-mirror symmetry. The mechanism of BPSV and the role of the electronic relaxation time $tau$ are also elucidated. We apply our theory to several distinct material systems, including transition metal dichalcogenides, anti-ferromagnetic $rm MnBi_2Te_4$, and the surface of topological crystalline insulator cubic $rm SnTe$.
The theoretical studies on the electronic and lattice properties of the series of non-centrosymmetric superconductors ThTSi, where T = Co, Ni, Ir, and Pt are presented. The electronic band structure and crystal parameters were optimized within the de nsity functional theory. The spin-orbit coupling leads to the splitting of the electronic bands and Fermi surfaces, with the stronger effect observed for the compounds with the heavier atoms Ir and Pt. The possible mixing of the spin-singlet and spin-triplet pairing in the superconducting state is discussed. The phonon dispersion relations and phonon density of states were obtained using the direct method. The dispersion curves in ThCoSi and ThIrSi exhibit the low-energy modes along the S-N-S0 line with the tendency for softening and dynamic instability. Additionally, we calculate and analyse the contributions of phonon modes to lattice heat capacity.
An investigation of the structural, magnetic, thermodynamic, and charge transport properties of non-centrosymmetric hexagonal ScFeGe reveals it to be an anisotropic metal with a transition to a weak itinerant incommensurate helimagnetic state below $ T_N = 36$ K. Neutron diffraction measurements discovered a temperature and field independent helical wavevector textbf{textit{k}} = (0 0 0.193) with magnetic moments of 0.53 $mu_{B}$ per formula unit confined to the {it ab}-plane. Density functional theory calculations are consistent with these measurements and find several bands that cross the Fermi level along the {it c}-axis with a nearly degenerate set of flat bands just above the Fermi energy. The anisotropy found in the electrical transport is reflected in the calculated Fermi surface, which consists of several warped flat sheets along the $c$-axis with two regions of significant nesting, one of which has a wavevector that closely matches that found in the neutron diffraction. The electronic structure calculations, along with a strong anomaly in the {it c}-axis conductivity at $T_N$, signal a Fermi surface driven magnetic transition, similar to that found in spin density wave materials. Magnetic fields applied in the {it ab}-plane result in a metamagnetic transition with a threshold field of $approx$ 6.7 T along with a sharp, strongly temperature dependent, discontinuity and a change in sign of the magnetoresistance for in-plane currents. Thus, ScFeGe is an ideal system to investigate the effect of in-plane magnetic fields on an easy-plane magnetic system, where the relative strength of the magnetic interactions and anisotropies determine the topology and magnetic structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا