ترغب بنشر مسار تعليمي؟ اضغط هنا

The expected gamma-ray flux coming from dark matter annihilation in dwarf spheroidal (dSph) galaxies depends on the so-called `J-factor, the integral of the squared dark matter density along the line-of-sight. We examine the degree to which estimates of J are sensitive to contamination (by foreground Milky Way stars and stellar streams) of the stellar-kinematic samples that are used to infer dark matter densities in `ultrafaint dSphs. Applying standard kinematic analyses to hundreds of mock data sets that include varying levels of contamination, we find that mis-classified contaminants can cause J-factors to be overestimated by orders of magnitude. Stellar-kinematic data sets for which we obtain such biased estimates tend 1) to include relatively large fractions of stars with ambiguous membership status, and 2) to give estimates for J that are sensitive to specific choices about how to weight and/or to exclude stars with ambiguous status. Comparing publicly-available stellar-kinematic samples for the nearby dSphs Reticulum~II and Segue~I, we find that only the latter displays both of these characteristics. Estimates of Segue~Is J-factor should therefore be regarded with a larger degree of caution when planning and interpreting gamma-ray observations. Moreover, robust interpretations regarding dark matter annihilation in dSph galaxies in general will require explicit examination of how interlopers might affect the inferred dark matter density profile.
124 - G. Walker , A. S. Arnold , 2012
We report the transfer of phase structure, and in particular of orbital angular momentum, from near-infrared pump light to blue light generated in a four-wave-mixing process in 85Rb vapour. The intensity and phase profile of the two pump lasers at 78 0nm and 776nm, shaped by a spatial light modulator, influences the phase and intensity profile of light at 420nm which is generated in a subsequent coherent cascade. In particular we oberve that the phase profile associated with orbital angular momentum is transferred entirely from the pump light to the blue. Pumping with more complicated light profiles results in the excitation of spatial modes in the blue that depend strongly on phase-matching, thus demonstrating the parametric nature of the mode transfer. These results have implications on the inscription and storage of phase-information in atomic gases.
Over the past few years we have built an apparatus to demonstrate the entanglement of neutral Rb atoms at optically resolvable distances using the strong interactions between Rydberg atoms. Here we review the basic physics involved in this process: l oading of single atoms into individual traps, state initialization, state readout, single atom rotations, blockade-mediated manipulation of Rydberg atoms, and demonstration of entanglement.
We develop, implement and characterise an enhanced data reduction approach which delivers precise, accurate, radial velocities from moderate resolution spectroscopy with the fibre-fed VLT/FLAMES+GIRAFFE facility. This facility, with appropriate care, delivers radial velocities adequate to resolve the intrinsic velocity dispersions of the very faint dSph dwarf galaxies. Importantly, repeated measurements let us reliably calibrate our individual velocity errors ($0.2 leq delta_Vleq 5$ km s$^{-1}$) and directly detect stars with variable radial velocities. We show, by application to the Bootes-1 dwarf spheroidal, that the intrinsic velocity dispersion of this system is significantly below 6.5,km/s reported by previous studies. Our data favor a two-population model of Bootes-1, consisting of a majority `cold stellar component, with velocity dispersion $2.4^{+0.9}_{-0.5}$,km/s, and a minority `hot stellar component, with velocity dispersion $sim 9$,km/s, although we can not completely rule out a single component distribution with velocity dispersion $4.6^{0.8}_{-0.6}$,km/s. We speculate this complex velocity distribution actually reflects the distribution of velocity anisotropy in Bootes-1, which is a measure of its formation processes.
We present measurements of the optical absorption of K vapor at 795 nm due to the presence of high pressure He gas. The results set a limit on the polarization attainable in hybrid spin-exchange optical pumping of He-3.
99 - B. Lancor , T. G. Walker 2010
We consider the degree of conservation of nuclear spin polarization in the process of optical pumping under typical spin-exchange optical pumping conditions. Previous analyses have assumed that negligible nuclear spin precession occurs in the brief p eriods of time the alkali-metal atoms are in the excited state after absorbing photons and before undergoing quenching collisions with nitrogen molecules. We include excited-state hyperfine interactions, electronic spin relaxation in collisions with He and N_2, spontaneous emission, quenching collisions, and a simplified treatment of radiation trapping.
372 - Stephen G. Walker 2009
This note presents a simple and elegant sampler which could be used as an alternative to the reversible jump MCMC methodology.
This paper introduces a new approach to the study of rates of convergence for posterior distributions. It is a natural extension of a recent approach to the study of Bayesian consistency. In particular, we improve on current rates of convergence for models including the mixture of Dirichlet process model and the random Bernstein polynomial model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا