ترغب بنشر مسار تعليمي؟ اضغط هنا

Trans-spectral orbital angular momentum transfer via four wave mixing in Rb vapor

185   0   0.0 ( 0 )
 نشر من قبل Aidan Arnold
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the transfer of phase structure, and in particular of orbital angular momentum, from near-infrared pump light to blue light generated in a four-wave-mixing process in 85Rb vapour. The intensity and phase profile of the two pump lasers at 780nm and 776nm, shaped by a spatial light modulator, influences the phase and intensity profile of light at 420nm which is generated in a subsequent coherent cascade. In particular we oberve that the phase profile associated with orbital angular momentum is transferred entirely from the pump light to the blue. Pumping with more complicated light profiles results in the excitation of spatial modes in the blue that depend strongly on phase-matching, thus demonstrating the parametric nature of the mode transfer. These results have implications on the inscription and storage of phase-information in atomic gases.



قيم البحث

اقرأ أيضاً

We demonstrate the spin to orbital angular momentum transfer in the nonlinear mixing of structured light beams. A vector vortex is coupled to a circularly polarized Gaussian beam in noncollinear second harmonic generation under type-II phase match. T he second harmonic beam inherits the Hermite-Gaussian components of the vector vortex, however, the relative phase between them is determined by the polarization state of the Gaussian beam. This effect creates an interesting crosstalk between spin and orbital degrees of freedom, allowing the angular momentum transfer between them. Our experimental results match the theoretical predictions for the nonlinear optical response.
We study quantum intensity correlations produced using four-wave mixing in a room-temperature rubidium vapor cell. An extensive study of the effect of the various parameters allows us to observe very large amounts of non classical correlations.
We investigate a four-wave mixing process in an N interaction scheme in Rb vapor placed inside a low-finesse ring cavity. We observe strong amplification and generation of a probe signal, circulating in the cavity, in the presence of two strong optic al pump fields. We study the variations in probe field gain and dispersion as functions of experimental parameters with an eye on potential application of such a system for enhanced rotation measurements. A density-matrix calculation is performed to model the system, and the theoretical results are compared to those of the experiment.
We propose and demonstrate a polarization-based truncated SU(1,1) interferometer that outputs the desired optical joint-quadrature of a two-mode squeezed vacuum field and allows its measurements using a single balanced homodyne detector. Using such s etup we demonstrated up to $approx$2 dB of quantum noise suppression below the shot-noise limit in intensity-difference and phase-sum joint quadratures, and confirmed entanglement between the two quantum fields. Our proposed technique results in a better balance between the two ports of the detector and, consequently, in better common noise suppression for differential measurements. As a result, we were able to observe flat joint-quadrature squeezing and entanglement at wide range of detection frequencies: from several MHz (limited by the photodiode gain bandwidth) down to a few hundred Hz (limited by electronic noises).
Experimental results from the generation of Raman sidebands using optical vortices are presented. By generating two sets of sidebands originating from different locations in a Raman active crystal, one set containing optical orbital angular momentum and the other serving as a reference, a Youngs double slit experiment was simultaneously realized for each sideband. The interference between the two sets of sidebands was used to determine the helicity and topological charge in each order. Topological charges in all orders were found to be discrete and follow selection rules predicted by a cascaded Raman process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا