ترغب بنشر مسار تعليمي؟ اضغط هنا

We show how the interference between spatially separated states of the center of mass (COM) of a mesoscopic harmonic oscillator can be evidenced by coupling it to a spin and performing solely spin manipulations and measurements (Ramsey Interferometry ). We propose to use an optically levitated diamond bead containing an NV center spin. The nano-scale size of the bead makes the motional decoherence due to levitation negligible. The form of the spin-motion coupling ensures that the scheme works for thermal states so that moderate feedback cooling suffices. No separate control or observation of the COM state is required and thereby one dispenses with cavities, spatially resolved detection and low mass-dispersion ensembles. The controllable relative phase in the Ramsey interferometry stems from a gravitational potential difference so that it uniquely evidences coherence between states which involve the whole nano-crystal being in spatially distinct locations.
The ability to probe the spin properties of solid state systems electrically underlies a wide variety of emerging technology. Here, we extend electrical readout of the nuclear spin states of phosphorus donors in silicon to the coherent regime with mo dified Hahn echo sequences. We find that, whilst the nuclear spins have electrically detected phase coherence times exceeding 2 ms, they are nonetheless limited by the artificially shortened lifetime of the probing donor electron.
There is growing interest in bismuth-doped silicon (Si:Bi) as an alternative to the well-studied proposals for silicon based quantum information processing (QIP) using phosphorus-doped silicon (Si:P). We focus here on the implications of its anomalou sly strong hyperfine coupling. In particular, we analyse in detail the regime where recent pulsed magnetic resonance experiments have demonstrated the potential for orders of magnitude speedup in quantum gates by exploiting transitions that are electron paramagnetic resonance (EPR) forbidden at high fields. We also present calculations using a phenomenological Markovian master equation which models the decoherence of the electron spin due to Gaussian temporal magnetic field perturbations. The model quantifies the advantages of certain optimal working points identified as the $df/dB=0$ regions, where $f$ is the transition frequency, which come in the form of frequency minima and maxima. We show that at such regions, dephasing due to the interaction of the electron spin with a fluctuating magnetic field in the $z$ direction (usually adiabatic) is completely removed.
The electron spin g- and hyperfine tensors of the endohedral metallofullerene Sc@C82 are anisotropic. Using electron spin resonance (ESR) and density functional theory (DFT), we can relate their principal axes to the coordinate frame of the molecule, finding that the g-tensor is not axially symmetric. The Sc bond with the cage is partly covalent and partly ionic. Most of the electron spin density is distributed around the carbon cage, but 5% is associated with the scandium d_yz orbital, and this drives the observed anisotropy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا