ترغب بنشر مسار تعليمي؟ اضغط هنا

Searches for magnetic fields in white dwarfs have clarified both the frequency of occurrence and the global structure of the fields found down to field strengths of the order of 500 kG. Below this level, the situation is still very unclear. We are st udying the weakest fields found in white dwarfs to determine the frequency of such fields and their structure. We describe a very sensitive new method of measuring such fields in DA (H-rich) white dwarfs, and search for a field in the brightest such star, 40 Eri B. Our new method makes use of the strongly enhanced polarisation signal in the sharp core of Halpha. We find that with one-hour integrations with the high-resolution spectropolarimeter ESPaDOnS on the 3.6-m CFHT, we can reach a standard error fo the longitudinal field of about 85 G, the smallest error ever achieved for any white dwarf. Nevertheless, we do not detect a magnetic field in this star. Observations with ISIS at the WHT, and the Main Stellar Spectrograph at the SAO, support the absence of a field at somewhat lower precision. The new method is very efficient; it is shown that for suitable DA stars the integration time, with ESPaDOnS on a 3.6-m telescope, to reach a 500 G standard error on a white dwarf of V = 12.5, is about half an hour, about the same as the time required on an ESO 8-m telescope with FORS using conventional low-resolution spectropolarimetry.
We present and interpret simultaneous new photometric and spectroscopic observations of the peculiar magnetic white dwarf WD1953-011. The flux in the V-band filter and intensity of the Balmer spectral lines demonstrate variability with the rotation p eriod of about 1.45 days. According to previous studies, this variability can be explained by the presence of a dark spot having a magnetic nature, analogous to a sunspot. Motivated by this idea, we examine possible physical relationships between the suggested dark spot and the strong-field magnetic structure (magnetic spot, or tube) recently identified on the surface of this star. Comparing the rotationally-modulated flux with the variable spectral observables related to the magnetic spot we establish their correlation, and therefore their physical relationship. Modeling the variable photometric flux assuming that it is associated with temperature variations in the stellar photosphere, we argue that the strong-field area and dark, low-temperature spot are comparable in size and located at the same latitudes, essentially overlapping each other with a possible slight longitudinal shift. In this paper we also present a new, improved value of the stars rotational period and constrain the characteristics of the thermal inhomogeneity over the degenerates surface.
The presence of electric currents in the atmospheres of magnetic chemically peculiar (mCP) stars could bring important theoretical constrains about the nature and evolution of magnetic field in these stars. The Lorentz force, which results from the i nteraction between the magnetic field and the induced currents, modifies the atmospheric structure and induces characteristic rotational variability of pressure-sensitive spectroscopic features, that can be analysed using phase-resolved spectroscopic observations. In this work we continue the presentation of results of the magnetic pressure studies in mCP stars focusing on the high-resolution spectroscopic observations of Bp star 56Ari. We have detected a significant variability of the Halpha, Hbeta, and Hgamma spectral lines during full rotation cycle of the star. Then these observations are interpreted in the framework of the model atmosphere analysis, which accounts for the Lorentz force effects. We used the LLmodels stellar model atmosphere code for the calculation of the magnetic pressure effects in the atmosphere of 56Ari taking into account realistic chemistry of the star and accurate computations of the microscopic plasma properties. The Synth3 code was employed to simulate phase-resolved variability of Balmer lines. We demonstrate that the model with the outward-directed Lorentz force in the dipole+quadrupole configuration is likely to reproduce the observed hydrogen lines variation. These results present strong evidences for the presence of non-zero global electric currents in the atmosphere of this early-type magnetic star.
We present a high resolving power ($lambda$ / $Deltalambda$ = 90,000) and high signal-to-noise ratio ($sim$700) spectral atlas of Vega covering the 3850 -- 6860 AA wavelength range. The atlas is a result of averaging of spectra recorded with the aid of the echelle spectrograph BOES fed by the 1.8-m telescope at Bohyunsan observatory (Korea). The atlas is provided only in machine-readable form (electronic data file) and will be available in the SIMBAD database upon publication.
We present and interpret new spectropolarimetric observations of the magnetic white dwarf WD 1953-011. Circular polarization and intensity spectra of the H$alpha$ spectral line demonstrate the presence of two-component magnetic field in the photosphe re of this star. The geometry consists of a weak, large scale component, and a strong, localized component. Analyzing the rotationally modulated low-field component, we establish a rotation period $P_{rot} = 1.4480 pm 0.0001$ days. Modeling the measured magnetic observables, we find that the low-field component can be described by the superposition of a dipole and quadrupole. According to the best-fit model, the inclination of the stellar rotation axis with respect to the line of sight is $i approx 20^circ$, and the angle between the rotation axis and the dipolar axis is $beta approx 10^circ$. The dipole strength at the pole is about 180 kG, and the quadrupolar strength is about 230 kG. These data suggest a fossil origin of the low-field component. In contrast, the strong-field component exhibits a peculiar, localized structure (``magnetic spot) that confirms the conclusions of Maxted and co-workers. The mean field modulus of the spot ($|B_{spot}| = 520 pm 7$ kG) together with its variable longitudinal magnetic field having a maximum of about +400 kG make it difficult to describe it naturally as a high-order component of the stars global poloidal field. Instead, we suggest that the observed strong-field region has a geometry similar to a magnetic flux tube.
We introduce a new polarimeter installed on the high-resolution fiber-fed echelle spectrograph (called BOES) of the 1.8-m telescope at the Bohyunsan Optical Astronomy Observatory, Korea. The instrument is intended to measure stellar magnetic fields w ith high-resolution (R $sim$ 60000) spectropolarimetric observations of intrinsic polarization in spectral lines. In this paper we describe the spectropolarimeter and present test observations of the longitudinal magnetic fields in some well-studied F-B main sequence magnetic stars (m_v < 8.8^m). The results demonstrate that the instrument has a high precision ability of detecting the fields of these stars with typical accuracies ranged from about 2G to a few tens of gauss.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا