ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate a possible new technique for microwave measurements of ultra-high energy cosmic ray (UHECR) extensive air showers which relies on detection of expected continuum radiation in the microwave range, caused by free-electron collisions with neutrals in the tenuous plasma left after the passage of the shower. We performed an initial experiment at the AWA (Argonne Wakefield Accelerator) laboratory in 2003 and measured broadband microwave emission from air ionized via high energy electrons and photons. A follow-up experiment at SLAC (Stanford Linear Accelerator Center) in summer of 2004 confirmed the major features of the previous AWA observations with better precision and made additional measurements relevant to the calorimetric capabilities of the method. Prompted by these results we built a prototype detector using satellite television technology, and have made measurements indicating possible detection of cosmic ray extensive air showers. The method, if confirmed by experiments now in progress, could provide a high-duty cycle complement to current nitrogen fluorescence observations of UHECR, which are limited to dark, clear nights. By contrast, decimeter microwave observations can be made both night and day, in clear or cloudy weather, or even in the presence of moderate precipitation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا