ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of Microwave Continuum Emission from Air Shower Plasmas

189   0   0.0 ( 0 )
 نشر من قبل Peter W. Gorham
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a possible new technique for microwave measurements of ultra-high energy cosmic ray (UHECR) extensive air showers which relies on detection of expected continuum radiation in the microwave range, caused by free-electron collisions with neutrals in the tenuous plasma left after the passage of the shower. We performed an initial experiment at the AWA (Argonne Wakefield Accelerator) laboratory in 2003 and measured broadband microwave emission from air ionized via high energy electrons and photons. A follow-up experiment at SLAC (Stanford Linear Accelerator Center) in summer of 2004 confirmed the major features of the previous AWA observations with better precision and made additional measurements relevant to the calorimetric capabilities of the method. Prompted by these results we built a prototype detector using satellite television technology, and have made measurements indicating possible detection of cosmic ray extensive air showers. The method, if confirmed by experiments now in progress, could provide a high-duty cycle complement to current nitrogen fluorescence observations of UHECR, which are limited to dark, clear nights. By contrast, decimeter microwave observations can be made both night and day, in clear or cloudy weather, or even in the presence of moderate precipitation.

قيم البحث

اقرأ أيضاً

The aim of the Air Microwave Yield (AMY) experiment is to investigate the Molecular Bremsstrahlung Radiation (MBR) emitted from an electron beam induced air-shower. The measurements have been performed with a 510 MeV electron beam at the Beam Test Fa cility (BTF) of Frascati INFN National Laboratories in a wide frequency range between 1 and 20 GHz. We present the experimental apparatus and the first results of the measurements. Contrary to what have been reported in a previous similar experiment~cite{Gorham-SLAC}, we have found that the intensity of the emission is strongly influenced by the particular time structure of the accelerator beam. This makes very difficult the interpretation of the emission process and a realistic extrapolation of the emission yield to the plasma generated during the development of an atmospheric shower.
466 - T. Huege 2013
A precise understanding of the radio emission from extensive air showers is of fundamental importance for the design of cosmic ray radio detectors as well as the analysis and interpretation of their data. In recent years, tremendous progress has been made in the understanding of the emission physics both in macroscopic and microscopic frameworks. A consistent picture has emerged: the emission stems mainly from time-varying transverse currents and a time-varying charge excess; in addition, Cherenkov-like compression of the emission due to the refractive index gradient in the atmosphere can lead to time-compression of the emitted pulses and thus high-frequency contributions in the signal. In this article, I discuss the evolution of the modelling in recent years, present the emission physics as it is understood today, and conclude with a description and comparison of the models currently being actively developed.
The AMY experiment aims to measure the microwave bremsstrahlung radiation (MBR) emitted by air-showers secondary electrons accelerating in collisions with neutral molecules of the atmosphere. The measurements are performed using a beam of 510 MeV ele ctrons at the Beam Test Facility (BTF) of Frascati INFN National Laboratories. The goal of the AMY experiment is to measure in laboratory conditions the yield and the spectrum of the GHz emission in the frequency range between 1 and 20 GHz. The final purpose is to characterise the process to be used in a next generation detectors of ultra-high energy cosmic rays. A description of the experimental setup and the first results are presented.
89 - R. Smida , F. Werner , R. Engel 2013
We report on the first direct measurement of the basic features of microwave radio emission from extensive air showers. Using a trigger provided by the KASCADE-Grande air shower array, the signals of the microwave antennas of the CROME (Cosmic-Ray Ob servation via Microwave Emission) experiment have been read out and searched for signatures of radio emission by high-energy air showers. Microwave signals have been detected for more than 30 showers with energies above $3times10^{16}$,eV. The observations presented in this Letter are consistent with a mainly forward-beamed, coherent and polarised emission process in the GHz frequency range. An isotropic, unpolarised radiation is disfavoured as the dominant emission model. The measurements show that microwave radiation offers a new means of studying air showers at very high energy.
Relativistic, charged particles present in extensive air showers lead to a coherent emission of radio pulses which are measured to identify the shower initiating high-energy cosmic rays. Especially during thunderstorms, there are additional strong el ectric fields in the atmosphere, which can lead to further multiplication and acceleration of the charged particles and thus have influence on the form and strength of the radio emission. For a reliable energy reconstruction of the primary cosmic ray by means of the measured radio signal it is very important to understand how electric fields affect the radio emission. In addition, lightning strikes are a prominent source of broadband radio emissions that are visible over very long distances. This, on the one hand, causes difficulties in the detection of the much lower signal of the air shower. On the other hand the recorded signals can be used to study features of the lightning development. The detection of cosmic rays via the radio emission and the influence of strong electric fields on this detection technique is investigated with the LOPES experiment in Karlsruhe, Germany. The important question if a lightning is initiated by the high electron density given at the maximum of a high-energy cosmic-ray air shower is also investigated, but could not be answered by LOPES. But, these investigations exhibit the capabilities of EAS radio antenna arrays for lightning studies. We report about the studies of LOPES measured radio signals of air showers taken during thunderstorms and give a short outlook to new measurements dedicated to search for correlations of lightning and cosmic rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا