ترغب بنشر مسار تعليمي؟ اضغط هنا

AX J1745.6-2901 is a high-inclination (eclipsing) neutron star Low Mass X-ray Binary (LMXB) located less than ~1.5 arcmin from Sgr A*. Ongoing monitoring campaigns have targeted Sgr A* frequently and these observations also cover AX J1745.6-2901. We present here an X-ray analysis of AX J1745.6-2901 using a large dataset of 38 XMM-Newton observations, including eleven which caught AX J1745.6-2901 in outburst. Fe K absorption is clearly seen when AX J1745.6-2901 is in the soft state, but disappears during the hard state. The variability of these absorption features does not appear to be due to changes in the ionizing continuum. The small Kalpha/Kbeta ratio of the equivalent widths of the Fe xxv and Fe xxvi lines suggests that the column densities and turbulent velocities of the absorbing ionised plasma are in excess of N_H ~ 10^23 cm^-2 and v_turb >~ 500 km s^-1. These findings strongly support a connection between the wind (Fe K absorber) and the accretion state of the binary. These results reveal strong similarities between AX J1745.6-2901 and the eclipsing neutron star LMXB, EXO 0748-676, as well as with high-inclination black hole binaries, where winds (traced by the same Fe K absorption features) are observed only during the accretion-disc-dominated soft states, and disappear during the hard states characterised by jet emission.
We took advantage of the observations carried out by XMM in the COSMOS field during 3.5 years, to study the long term variability of a large sample of AGN (638 sources), in a wide range of redshift (0.1<z<3.5) and X-ray luminosity ($10^{41}<$L(2-10)$ <10^{45.5}$). Both a simple statistical method to asses the significance of variability, and the Normalized Excess Variance ($sigma^{2}_{rms}$) parameter, where used to obtain a quantitative measurement of the variability. Variability is found to be prevalent in most AGN, whenever we have good statistic to measure it, and no significant differences between type-1 and type-2 AGN were found. A flat (slope -0.23+/-0.03) anti-correlation between $sigma^{2}_{rms}$ and X-ray luminosity is found, when significantly variable sources are considered all together. When divided in three redshift bins, the anti-correlation becomes stronger and evolving with z, with higher redshift AGN being more variable. We prove however that this effect is due to the pre-selection of variable sources: considering all the sources with available $sigma^{2}_{rms}$ measurement, the evolution in redshift disappears. For the first time we were also able to study the long term X-ray variability as a function of $M_{rm BH}$ and Eddington ratio, for a large sample of AGN spanning a wide range of redshift. An anti-correlation between $sigma^{2}_{rms}$ and $M_{rm BH}$ is found, with the same slope of the anti-correlation between $sigma^{2}_{rms}$ and X-ray luminosity, suggesting that the latter can be a byproduct of the former one. No clear correlation is found between $sigma^{2}_{rms}$ and the Eddington ratio in our sample. Finally, no correlation is found between the X-ray $sigma^{2}_{rms}$ and the optical variability.
We report on a detailed study of the Fe K emission/absorption complex in the nearby, bright Seyfert 1 galaxy Mrk 509. The study is part of an extensive XMM-Newton monitoring consisting of 10 pointings (~60 ks each) about once every four days, and inc ludes also a reanalysis of previous XMM-Newton and Chandra observations. Mrk 509 shows a clear (EW=58 eV) neutral Fe Kalpha emission line that can be decomposed into a narrow (sigma=0.027 keV) component (found in the Chandra HETG data) plus a resolved (sigma=0.22 keV) component. We find the first successful measurement of a linear correlation between the intensity of the resolved line component and the 3-10 keV flux variations on time-scales of years down to a few days. The Fe Kalpha reverberates the hard X-ray continuum without any measurable lag, suggesting that the region producing the resolved Fe Kalpha component is located within a few light days-week (r<~10^3 rg) from the Black Hole (BH). The lack of a redshifted wing in the line poses a lower limit of >40 rg for its distance from the BH. The Fe Kalpha could thus be emitted from the inner regions of the BLR, i.e. within the ~80 light days indicated by the Hbeta line measurements. In addition to these two neutral Fe Kalpha components, we confirm the detection of weak (EW~8-20 eV) ionised Fe K emission. This ionised line can be modeled with either a blend of two narrow FeXXV and FeXXVI emission lines or with a single relativistic line produced, in an ionised disc, down to a few rg from the BH. Finally, we observe a weakening/disappearing of the medium and high velocity high ionisation Fe K wind features found in previous XMM-Newton observations. This campaign has made possible the first reverberation measurement of the resolved component of the Fe Kalpha line, from which we can infer a location for the bulk of its emission at a distance of r~40-1000 rg from the BH.
77 - B. De Marco , G. Ponti , M. Cappi 2011
We carried out a systematic analysis of time lags between X-ray energy bands in a large sample (32 sources) of unabsorbed, radio quiet active galactic nuclei (AGN), observed by XMM-Newton. The analysis of X-ray lags (up to the highest/shortest freque ncies/time-scales), is performed in the Fourier-frequency domain, between energy bands where the soft excess (soft band) and the primary power law (hard band) dominate the emission. We report a total of 15 out of 32 sources displaying a high frequency soft lag in their light curves. All 15 are at a significance level exceeding 97 per cent and 11 are at a level exceeding 99 per cent. Of these soft lags, 7 have not been previously reported in the literature, thus this work significantly increases the number of known sources with a soft/negative lag. The characteristic time-scales of the soft/negative lag are relatively short (with typical frequencies and amplitudes of usim 0.07-4 times 10^{-3} Hz and tausim 10-600 s, respectively), and show a highly significant (gsim 4sigma) correlation with the black hole mass. The measured correlations indicate that soft lags are systematically shifted to lower frequencies and higher absolute amplitudes as the mass of the source increases. To first approximation, all the sources in the sample are consistent with having similar mass-scaled lag properties. These results strongly suggest the existence of a mass-scaling law for the soft/negative lag, that holds for AGN spanning a large range of masses (about 2.5 orders of magnitude), thus supporting the idea that soft lags originate in the innermost regions of AGN and are powerful tools for testing their physics and geometry.
The centre of our Galaxy harbours a 4 million solar mass black hole that is unusually quiet: its present X-ray luminosity is more than 10 orders of magnitude less than its Eddington luminosity. The observation of iron fluorescence and hard X-ray emis sion from some of the massive molecular clouds surrounding the Galactic Centre has been interpreted as an echo of a past flare. Alternatively, low-energy cosmic rays propagating inside the clouds might account for the observed emission, through inverse bremsstrahlung of low energy ions or bremsstrahlung emission of low energy electrons. Here we report the observation of a clear decay of the hard X-ray emission from the molecular cloud Sgr B2 during the past 7 years thanks to more than 20 Ms of INTEGRAL exposure. The measured decay time is compatible with the light crossing time of the molecular cloud core . Such a short timescale rules out inverse bremsstrahlung by cosmic-ray ions as the origin of the X ray emission. We also obtained 2-100 keV broadband X-ray spectra by combining INTEGRAL and XMM-Newton data and compared them with detailed models of X-ray emission due to irradiation of molecular gas by (i) low-energy cosmic-ray electrons and (ii) hard X-rays. Both models can reproduce the data equally well, but the time variability constraints and the huge cosmic ray electron luminosity required to explain the observed hard X-ray emission strongly favor the scenario in which the diffuse emission of Sgr B2 is scattered and reprocessed radiation emitted in the past by Sgr A*. Using recent parallax measurements that place Sgr B2 in front of Sgr A*, we find that the period of intense activity of Sgr A* ended between 75 and 155 years ago.
99 - S. Soldi 2010
We present preliminary results on the variability properties of AGN above 20 keV in order to show the potential of the INTEGRAL IBIS/ISGRI and Swift/BAT instruments for hard X-ray timing analysis of AGN. The 15-50 keV light curves of 36 AGN observed by BAT during 5 years show significantly larger variations when the blazar population is considered (average normalized excess variance = 0.25) with respect to the Seyfert one (average normalized excess variance = 0.09). The hard X-ray luminosity is found to be anti-correlated to the variability amplitude in Seyfert galaxies and correlated to the black hole mass, confirming previous findings obtained with different AGN hard X-ray samples. We also present results on the Seyfert 1 galaxy IC 4329A, as an example of spectral variability study with INTEGRAL/ISGRI data. The position of the high-energy cut-off of this source is found to have varied during the INTEGRAL observations, pointing to a change of temperature of the Comptonising medium. For several bright Seyfert galaxies, a considerable amount of INTEGRAL data have already been accumulated and are publicly available, allowing detailed spectral variability studies at hard X-rays.
82 - G. Ponti 2009
We report on partially overlapping XMM-Newton (~260 ks) and Suzaku (~100 ks) observations of the iron K band in the nearby, bright Seyfert 1 galaxy Mrk 509. The source shows a resolved neutral Fe K line, most probably produced in the outer part of th e accretion disc. Moreover, the source shows further emission blue-ward of the 6.4 keV line due to ionized material. This emission is well reproduced by a broad line produced in the accretion disc, while it cannot be easily described by scattering or emission from photo-ionized gas at rest. The summed spectrum of all XMM-Newton observations shows the presence of a narrow absorption line at 7.3 keV produced by highly ionized outflowing material. A spectral variability study of the XMM-Newton data shows an indication for an excess of variability at 6.6-6.7 keV. These variations may be produced in the red wing of the broad ionized line or by variation of a further absorption structure. The Suzaku data indicate that the neutral Fe Kalpha line intensity is consistent with being constant on long timescales (of a few years) and they also confirm as most likely the interpretation of the excess blueshifted emission in terms of a broad ionized Fe line. The average Suzaku spectrum differs from the XMM-Newton one for the disappearance of the 7.3 keV absorption line and around 6.7 keV, where the XMM-Newton data alone suggested variability.
We have observed with XMM-Newton four radiatively efficient active type 1 galaxies with black hole masses < 10^6 Msun, selected optically from the SDSS. We show here that their soft X-ray spectrum exhibits a soft excess with the same characteristics as that observed ubiquitously in radio-quiet Seyfert 1 galaxies and type 1 quasars, both in terms of temperatures and strength. However, even when the soft X-ray excess is modelled with a pure thermal disc, its luminosity turns out to be much lower than that expected from accretion theory for the given temperature, casting further doubts on a thermal interpretation for soft excesses. While alternative scenarios for the nature of the soft excess (namely smeared ionized absorption and disc reflection) cannot be distinguished on a pure statistical basis, we point out that the absorption model produces a strong correlation between absorbing column density and ionization state, which may be difficult to interpret and is most likely spurious. As for reflection, it does only invoke standard ingredients of any accretion model for radiatively efficient sources such as a hard X-rays source and a relatively cold (though partially ionized) accretion disc, and therefore seems the natural choice to explain the soft excess in most (if not all) cases. The reflection model is also consistent with the additional presence of a thermal disc component with the theoretically expected temperature (although, again, with smaller-than-expected total luminosity). The observed active galaxies are among the most variable in X-rays and their excess variance is among the largest. This is in line with their relatively small black hole mass and with expectations from simple power spectra models. (abridged)
66 - P. Casella , G. Ponti (2 , 3 2008
We describe a new method to estimate the mass of black holes in Ultraluminous X-ray Sources (ULXs). The method is based on the recently discovered ``variability plane, populated by Galactic stellar-mass black-hole candidates (BHCs) and supermassive a ctive galactic nuclei (AGNs), in the parameter space defined by the black-hole mass, accretion rate and characteristic frequency. We apply this method to the two ULXs from which low-frequency quasi-periodic oscillations have been discovered, M82 X-1 and NGC 5408 X-1. For both sources we obtain a black-hole mass in the range 100~1300 Msun, thus providing evidence for these two sources to host an intermediate-mass black hole.
52 - P.O. Petrucci 2007
Mkr 841 is a bright Seyfert 1 galaxy known to harbor a strong soft excess and a variable K$alpha$ iron line. It has been observed during 3 different periods by XMM for a total cumulated exposure time of $sim$108 ks. We present in this paper a broad b and spectral analysis of the complete EPIC-pn data sets. We were able to test two different models for the soft excess, a relativistically blurred photoionized reflection (r model) and a relativistically smeared ionized absorption (a model). The continuum is modeled by a simple cut-off power law and we also add a neutral reflection. These observations reveal the extreme and puzzling spectral and temporal behaviors of the soft excess and iron line. The 0.5-3 keV soft X-ray flux decreases by a factor 3 between 2001 and 2005 and the line shape appears to be a mixture of broad and narrow components. We succeed in describing this complex broad-band 0.5-10 keV spectral variability using either r or a to fit the soft excess. Both models give statistically equivalent results even including simultaneous BeppoSAX data up to 200 keV. Both models are consistent with the presence of remote reflection characterized by a constant narrow component in the data. However they differ in the presence of a broad line component present in r but not needed in a. This study also reveals the sporadic presence of relativistically redshifted narrow iron lines.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا