ترغب بنشر مسار تعليمي؟ اضغط هنا

We have recently proposed a new simplified scenario where blazars are classified as flat-spectrum radio quasars (FSRQs) or BL Lacs according to the prescriptions of unified schemes, and to a varying combination of Doppler boosted radiation from the j et, emission from the accretion disk, the broad line region, and light from the host galaxy. Here we extend our approach, previously applied to radio and X-ray surveys, to the gamma-ray band and, through detailed Monte Carlo simulations, compare our predictions to Fermi-LAT survey data. Our simulations are in remarkable agreement with the overall observational results, including the percentages of BL Lacs and FSRQs, the fraction of redshift-less objects, and the redshift, synchrotron peak, and gamma-ray spectral index distributions. The strength and large scatter of the oft-debated observed Gamma-ray -- radio flux density correlation is also reproduced. In addition, we predict that almost 3/4 of Fermi-LAT BL Lacs, and basically all of those without redshift determination, are actually FSRQs with their emission lines swamped by the non-thermal continuum and as such should be considered. Finally, several of the currently unassociated high Galactic latitude Fermi sources are expected to be radio-faint blazars displaying a pure elliptical galaxy optical spectrum.
We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and gamma-ray bands. Our unique data set has allowed us to demonstrate that the selection m ethod strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by Fermi-LAT, whereas ~40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the gamma-ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-mm spectral slope of blazars is quite flat up to ~70GHz, above which it steepens to <alpha>~-0.65. BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency ( upS) in the SED of FSRQs is the same in all the blazar samples with < upS>=10^13.1 Hz, while the mean inverse-Compton peak frequency, < upIC>, ranges from 10^21 to 10^22 Hz. The distributions of upS and of upIC of BL Lacs are much broader and are shifted to higher energies than those of FSRQs and strongly depend on the selection method. The Compton dominance of blazars ranges from ~0.2 to ~100, with only FSRQs reaching values >3. Its distribution is broad and depends strongly on the selection method, with gamma-ray selected blazars peaking at ~7 or more, and radio-selected blazars at values ~1, thus implying that the assumption that the blazar power is dominated by high-energy emission is a selection effect. Simple SSC models cannot explain the SEDs of most of the gamma-ray detected blazars in all samples. The SED of the blazars that were not detected by Fermi-LAT may instead be consistent with SSC emission. Our data challenge the correlation between bolometric luminosity and upS predicted by the blazar sequence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا