ترغب بنشر مسار تعليمي؟ اضغط هنا

A simplified view of blazars: the gamma-ray case

77   0   0.0 ( 0 )
 نشر من قبل Paolo Giommi
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have recently proposed a new simplified scenario where blazars are classified as flat-spectrum radio quasars (FSRQs) or BL Lacs according to the prescriptions of unified schemes, and to a varying combination of Doppler boosted radiation from the jet, emission from the accretion disk, the broad line region, and light from the host galaxy. Here we extend our approach, previously applied to radio and X-ray surveys, to the gamma-ray band and, through detailed Monte Carlo simulations, compare our predictions to Fermi-LAT survey data. Our simulations are in remarkable agreement with the overall observational results, including the percentages of BL Lacs and FSRQs, the fraction of redshift-less objects, and the redshift, synchrotron peak, and gamma-ray spectral index distributions. The strength and large scatter of the oft-debated observed Gamma-ray -- radio flux density correlation is also reproduced. In addition, we predict that almost 3/4 of Fermi-LAT BL Lacs, and basically all of those without redshift determination, are actually FSRQs with their emission lines swamped by the non-thermal continuum and as such should be considered. Finally, several of the currently unassociated high Galactic latitude Fermi sources are expected to be radio-faint blazars displaying a pure elliptical galaxy optical spectrum.

قيم البحث

اقرأ أيضاً

Since its launch in April 2007, the AGILE satellite detected with its Gamma-Ray Imaging Detector (GRID) several blazars at high significance: 3C 279, 3C 454.3, PKS 1510-089, S5 0716+714, 3C 273, W Comae, Mrk 421 and PKS 0537-441. Moreover, AGILE was able both to rapidly respond to sudden changes in blazar activity state at other wavelengths and to alert other telescopes quickly in response to changes in the gamma-ray fluxes. Thus, we were able to obtain multiwavelength data from other observatories such as Spitzer, Swift, RXTE, Suzaku, INTEGRAL, MAGIC, VERITAS, as well as radio-to-optical coverage by means of the GASP Project of the WEBT and REM. This large multifrequency coverage gave us the opportunity to study the Spectral Energy Distribution of these sources from radio to gamma-rays energy bands and to investigate the different mechanisms responsible for their emission. We present an overview of the AGILE results on these gamma-ray blazars and the relative multifrequency data.
During the first 3 years of operation the Gamma-Ray Imaging Detector onboard the AGILE satellite detected several blazars in a high gamma-ray activity: 3C 279, 3C 454.3, PKS 1510-089, S5 0716+714, 3C 273, W Comae, Mrk 421, PKS 0537-441 and 4C +21.35. Thanks to the rapid dissemination of our alerts, we were able to obtain multiwavelength data from other observatories such as Spitzer, Swift, RXTE, Suzaku, INTEGRAL, MAGIC, VERITAS, and ARGO as well as radio-to-optical coverage by means of the GASP Project of the WEBT and the REM Telescope. This large multifrequency coverage gave us the opportunity to study the variability correlations between the emission at different frequencies and to obtain simultaneous spectral energy distributions of these sources from radio to gamma-ray energy bands, investigating the different mechanisms responsible for their emission and uncovering in some cases a more complex behaviour with respect to the standard models. We present a review of the most interesting AGILE results on these gamma-ray blazars and their multifrequency data.
353 - P. Padovani 2015
Blazars have been suggested as possible neutrino sources long before the recent IceCube discovery of high-energy neutrinos. We re-examine this possibility within a new framework built upon the blazar simplified view and a self-consistent modelling of neutrino emission from individual sources. The former is a recently proposed paradigm that explains the diverse statistical properties of blazars adopting minimal assumptions on blazars physical and geometrical properties. This view, tested through detailed Monte Carlo simulations, reproduces the main features of radio, X-ray, and gamma-ray blazar surveys and also the extragalactic gamma-ray background at energies > 10 GeV. Here we add a hadronic component for neutrino production and estimate the neutrino emission from BL Lacs as a class, calibrated by fitting the spectral energy distributions of a preselected sample of BL Lac objects and their (putative) neutrino spectra. Unlike all previous papers on this topic, the neutrino background is then derived by summing up at a given energy the fluxes of each BL Lac in the simulation, all characterised by their own redshift, synchrotron peak energy, gamma-ray flux, etc. Our main result is that BL Lacs as a class can explain the neutrino background seen by IceCube above ~ 0.5 PeV while they only contribute ~ 10% at lower energies, leaving room to some other population(s)/physical mechanism. However, one cannot also exclude the possibility that individual BL Lacs still make a contribution at the ~ 20% level to the IceCube low-energy events. Our scenario makes specific predictions testable in the next few years.
101 - Krzysztof Nalewajko 2012
I present a systematic study of gamma-ray flares in blazars. For this purpose, I propose a very simple and practical definition of a flare as a period of time, associated with a given flux peak, during which the flux is above half of the peak flux. I select a sample of 40 brightest gamma-ray flares observed by Fermi/LAT during the first 4 years of its mission. The sample is dominated by 4 blazars: 3C 454.3, PKS 1510-089, PKS 1222+216 and 3C 273. For each flare, I calculate a light curve and variations of the photon index. For the whole sample, I study the distributions of the peak flux, peak luminosity, duration, time asymmetry, average photon index and photon index scatter. I find that: 1) flares produced by 3C 454.3 are longer and have more complex light curves than those produced by other blazars; 2) flares shorter than 1.5 days in the source frame tend to be time-asymmetric with the flux peak preceding the flare midpoint. These differences can be largely attributed to a smaller viewing angle of 3C 454.3 as compared to other blazars. Intrinsically, the gamma-ray emitting regions in blazar jets may be structured and consist of several domains. I find no regularity in the spectral gamma-ray variations of flaring blazars.
We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPol observing season. We investigate whether gamma- ray--loud and gamma-ray--quiet blazars exhibit systematic differences in their optic al polarization properties. We find that gamma-ray--loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray--quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3{sigma} level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band lu- minosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high synchrotron- peaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray--quiet sources show similar median polarization fractions although they are all low synchrotron-peaked. We also find that the random- ness of the polarization angle depends on the synchrotron peak frequency. For high synchrotron-peaked sources it tends to concentrate around preferred directions while for low synchrotron-peaked sources it is more variable and less likely to have a pre- ferred direction. We propose a scenario which mediates efficient particle acceleration in shocks and increases the helical B-field component immediately downstream of the shock.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا