ترغب بنشر مسار تعليمي؟ اضغط هنا

66 - G. Pace 2010
Chromospheric activity has been thought to decay smoothly with time and, hence, to be a viable age indicator. Measurements in solar type stars in open clusters seem to point to a different conclusion: chromospheric activity undergoes a fast transitio n from Hyades level to that of the Sun after about 1 Gyr of main--sequence lifetime and any decaying trend before or after this transition must be much less significant than the short term variations.
332 - G. Pace 2010
Classical chemical analyses may be affected by systematic errors that would cause observed abundance differences between dwarfs and giants. For some elements, however, the abundance difference could be real. We address the issue by observing 2 solar- -type dwarfs in NGC 5822 and 3 in IC 4756, and comparing their composition with that of 3 giants in either of the aforementioned clusters. We determine iron abundance and stellar parameters of the dwarf stars, and the abundances of calcium, sodium, nickel, titanium, aluminium, chromium, silicon and oxygen for both the giants and dwarfs. We acquired UVES high-resolution, of high signal--to--noise ratio (S/N) spectra. The width of the cross correlation profiles was used to measure rotation velocities. For abundance determinations, the standard equivalent width analysis was performed differentially with respect to the Sun. For lithium and oxygen, we derived abundances by comparing synthetic spectra with observed line features. We find an iron abundance for dwarf stars equal to solar to within the margins of error for IC 4756, and slightly above for NGC 5822 ([Fe/H]= 0.01 and 0.05 dex respectively). The 3 stars in NG 4756 have lithium abundances between Log N(Li) 2.6 and 2.8 dex, the two stars in NGC 5822 have Log N(Li) ~ 2.8 and 2.5, respectively. For sodium, silicon, and titanium, we show that abundances of giants are significantly higher than those of the dwarfs of the same cluster (about 0.15, 0.15, and 0.35 dex).
409 - G. Pace 2009
Chromospheric activity is widely used as an age indicator for solar-type stars based on the early evidence that there is a smooth evolution from young and active to old and inactive stars. We analysed chromospheric activity in five solar-type stars i n two open clusters, in order to study how chromospheric activity evolves with time. We took UVES high-resolution, high S/N ratio spectra of 3 stars in IC 4756 and 2 in NGC 5822, which were combined with a previously studied data-set and reanalysed here. The emission core of the deep, photospheric Ca II K line was used as a probe of the chromospheric activity. All of the 5 stars in the new sample, including those in the 1.2 Gyr-old NGC 5822, have activity levels comparable to those of Hyades and Praesepe. A likely interpretation of our data is that solar-type-star chromospheric activity, from the age of the Hyades until that of the Sun, does not evolve smoothly. Stars change from active to inactive on a short timescale. Evolution before and after such a transition is much less significant than cyclical and long-term variations. We show that data presented in the literature to support a correlation between age and activity could be also interpreted differently in the light of our results.
143 - N.C. Santos , C. Lovis , G. Pace 2008
We present a study of accurate stellar parameters and iron abundances for 39 giants and 16 dwarfs in the 13 open clusters IC2714, IC4651, IC4756, NGC2360, NGC2423, NGC2447 (M93), NGC2539, NGC2682 (M67), NGC3114, NGC3680, NGC4349, NGC5822, NGC6633. Th e analysis was done using a set of high-resolution and high-S/N spectra obtained with the UVES spectrograph (VLT). These clusters are currently being searched for planets using precise radial velocities. For all the clusters, the derived average metallicities are close to solar. Interestingly, the values derived seem to depend on the line-list used. This dependence and its implications for the study of chemical abundances in giants stars are discussed. We show that a careful choice of the lines may be crucial for the derivation of metallicities for giant stars on the same metallicity scale as those derived for dwarfs. Finally, we discuss the implications of the derived abundances for the metallicity- and mass-giant planet correlation. We conclude that a good knowledge of the two parameters is necessary to correctly disentangle their influence on the formation of giant planets.
103 - G. Pace 2008
We present the abundance measurements of several elements (Fe, Ca, Na, Ni, Ti, Al, Cr, Si) for 20 solar--type stars belonging to four Galactic open clusters: NGC 3680, IC 4651, Praesepe, and M 67. Oxygen abundances were in addition measured for most of the stars in each cluster apart from IC 4651. For NGC 3680 accurate abundance determinations using high--resolution spectra covering a large spectral domain are computed for the first time. We used UVES high--resolution, high signal to noise ratio spectra and performed a differential analysis with respect to the sun, by measuring equivalent widths and assuming LTE. The most surprising result is a significant supersolar metallicity for Praesepe ([Fe/H]=0.27+-0.10). As for the other clusters, we confirm a supersolar metallicity for IC 4651 ([Fe/H]=0.12+-0.05), a solar metallicity for M 67 ([Fe/H]=0.03+-0.04) and a slight subsolar metallicity for NGC 3680 ([Fe/H]=-0.04+-0.03). We find that the abundance ratios of almost all elements are solar, with the notable exception of oxygen in NGC 3680 and Praesepe, supersolar in the former cluster ([O/Fe]=0.2+-0.05) and as low as [O/Fe]=-0.4+-0.1 in the latter. Observations of several objects per cluster is required to obtain robust results, especially for those elements with a limited number of suitable lines.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا