ترغب بنشر مسار تعليمي؟ اضغط هنا

In recent years, Artificial Intelligence techniques have proved to be very successful when applied to problems in physical sciences. Here we apply an unsupervised Machine Learning (ML) algorithm called Principal Component Analysis (PCA) as a tool to analyse the data from muon spectroscopy experiments. Specifically, we apply the ML technique to detect phase transitions in various materials. The measured quantity in muon spectroscopy is an asymmetry function, which may hold information about the distribution of the intrinsic magnetic field in combination with the dynamics of the sample. Sharp changes of shape of asymmetry functions - measured at different temperatures - might indicate a phase transition. Existing methods of processing the muon spectroscopy data are based on regression analysis, but choosing the right fitting function requires knowledge about the underlying physics of the probed material. Conversely, Principal Component Analysis focuses on small differences in the asymmetry curves and works without any prior assumptions about the studied samples. We discovered that the PCA method works well in detecting phase transitions in muon spectroscopy experiments and can serve as an alternative to current analysis, especially if the physics of the studied material are not entirely known. Additionally, we found out that our ML technique seems to work best with large numbers of measurements, regardless of whether the algorithm takes data only for a single material or whether the analysis is performed simultaneously for many materials with different physical properties.
A detailed description of the structure of two-ended arc-transitive digraphs is given. It is also shown that several sets of conditions, involving such concepts as Property Z, local quasi-primitivity and prime out-valency, imply that an arc-transitiv e digraph must be highly-arc-transitive. These are then applied to give a complete classification of two-ended highly-arc-transitive digraphs with prime in- and out-valencies.
A general method for constructing sharply $k$-arc-transitive digraphs, i.e. digraphs that are $k$-arc-transitive but not $(k+1)$-arc-transitive, is presented. Using our method it is possible to construct both finite and infinite examples. The infinit e examples can have one, two or infinitely many ends. Among the one-ended examples there are also digraphs that have polynomial growth.
Topological states of matter exhibit many novel properties due to the presence of robust topological invariants such as the Chern index. These global characteristics pertain to the system as a whole and are not locally defined. However, local topolog ical markers can distinguish between topological phases, and they can vary in space. In equilibrium, we show that the topological marker can be used to extract the critical behavior of topological phase transitions. Out of equilibrium, we show that the topological marker spreads via a flow of currents, with a bounded maximum propagation speed. We discuss the possibilities for measuring the topological marker and its flow in experiment.
115 - T. S. Jackson , G. Moller , R. Roy 2014
The fractional quantum Hall (FQH) effect illustrates the range of novel phenomena which can arise in a topologically ordered state in the presence of strong interactions. The possibility of realizing FQH-like phases in models with strong lattice effe cts has attracted intense interest as a more experimentally accessible venue for FQH phenomena which calls for more theoretical attention. Here we investigate the physical relevance of previously derived geometric conditions which quantify deviations from the Landau level physics of the FQHE. We conduct extensive numerical many-body simulations on several lattice models, obtaining new theoretical results in the process, and find remarkable correlation between these conditions and the many-body gap. These results indicate which physical factors are most relevant for the stability of FQH-like phases, a paradigm we refer to as the geometric stability hypothesis, and provide easily implementable guidelines for obtaining robust FQH-like phases in numerical or real-world experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا