ترغب بنشر مسار تعليمي؟ اضغط هنا

The post main-sequence evolution of massive stars is very sensitive to many parameters of the stellar models. Key parameters are the mixing processes, the metallicity, the mass-loss rate and the effect of a close companion. We study how the red super giant lifetimes, the tracks in the Hertzsprung-Russel diagram (HRD), the positions in this diagram of the pre-supernova progenitor as well as the structure of the stars at that time change for various mass-loss rates during the red supergiant phase (RSG), and for two different initial rotation velocities. The surface abundances of RSGs are much more sensitive to rotation than to the mass-loss rates during that phase. A change of the RSG mass-loss rate has a strong impact on the RSG lifetimes and therefore on the luminosity function of RSGs. At solar metallicity, the enhanced mass-loss rate models do produce significant changes on the populations of blue, yellow and red supergiants. When extended blue loops or blue ward excursions are produced by enhanced mass-loss, the models predict that a majority of blue (yellow) supergiants are post RSG objects. These post RSG stars are predicted to show much smaller surface rotational velocities than similar blue supergiants on their first crossing of the HR gap. The position in the HRD of the end point of the evolution depends on the mass of the hydrogen envelope. More precisely, whenever, at the pre-supernova stage, the H-rich envelope contains more than about 5% of the initial mass, the star is a red supergiant, and whenever the H-rich envelope contains less than 1% of the total mass the star is a blue supergiant. For intermediate situations, intermediate colors/effective temperatures are obtained. Yellow progenitors for core collapse supernovae can be explained by the enhanced mass-loss rate models, while the red progenitors are better fitted by the standard mass-loss rate models.
73 - H.F. Song , A. Maeder , G. Meynet 2013
We study how tides in a binary system induce some specific internal shear mixing, able to substantially modify the evolution of close binaries prior to mass transfer. We construct numerical models accounting for tidal interactions, meridional circula tion, transport of angular momentum, shears and horizontal turbulence and consider a variety of orbital periods and initial rotation velocities. Depending on orbital periods and rotation velocities, tidal effects may spin down (spin down Case) or spin up (spin up Case) the axial rotation. In both cases, tides may induce a large internal differential rotation. The resulting tidally induced shear mixing (TISM) is so efficient that the internal distributions of angular velocity and chemical elements are greatly influenced. The evolutionary tracks are modified, and in both cases of spin down and spin up, large amounts of nitrogen can be transported to the stellar surfaces before any binary mass transfer. Meridional circulation, when properly treated as an advection, always tends to counteract the tidal interaction, tending to spin up the surface when it is braked down and vice versa. As a consequence, the times needed for the axial angular velocity to become equal to the orbital angular velocity may be larger than given by typical synchronization timescales. Also, due to meridional circulation some differential rotation remains in tidally locked binary systems.
The way angular momentum is built up in stars during their formation process may have an impact on their further evolution. In the frame of the cold disc accretion scenario, we study for the first time how angular momentum builds up inside the star d uring its formation and what are the consequences for its evolution on the main sequence (MS). Computation begins from a hydrostatic core on the Hayashi line of 0.7 Msol at solar metallicity (Z=0.014) rotating as a solid body. Accretion rates depending on the luminosity of the accreting object are considered varying between 1.5e-5 and 1.7e-3 Msol/yr. The accreted matter is assumed to have an angular velocity equal to that of the outer layer of the accreting star. Models are computed for a mass-range on the zero-age main sequence (ZAMS) between 2 and 22 Msol. We study how the internal and surface velocities vary as a function of time during the accretion phase and the evolution towards the ZAMS. Stellar models, whose evolution has been followed along the pre-MS phase, are found to exhibit a shallow gradient of angular velocity on the ZAMS. Interestingly, for masses on the ZAMS larger than 8 Msol, there exists a maximum surface velocity that can be reached through the present scenario of formation. Typically, for 14 Msol models, only stars with surface velocities on the ZAMS lower than about 45% of the critical velocity can be formed. To reach higher velocities would require to start from cores rotating above the critical limit. We find that this upper velocity limit is smaller for higher masses. In contrast, below 8 Msol, there is no restriction and the whole domain of velocities, up to the critical one, can be reached.
Aims: We study the influence of rotation and disc lifetime on lithium depletion of pre-main sequence (PMS) solar-type stars. Methods: The impact of rotational mixing and of the hydrostatic effects of rotation on lithium abundances are investigated by computing non-rotating and rotating PMS models that include a comprehensive treatment of shellular rotation. The influence of the disc lifetime is then studied by comparing the lithium content of PMS rotating models experiencing different durations of the disc-locking phase between 3 and 9 Myr. Results: The surface lithium abundance at the end of the PMS is decreased when rotational effects are included. During the beginning of the lithium depletion phase, only hydrostatic effects of rotation are at work. This results in a decrease in the lithium depletion rate for rotating models compared to non-rotating ones. When the convective envelope recedes from the stellar centre, rotational mixing begins to play an important role due to differential rotation near the bottom of the convective envelope. This mixing results in a decrease in the surface lithium abundance with a limited contribution from hydrostatic effects of rotation, which favours lithium depletion during the second part of the PMS evolution. The impact of rotation on PMS lithium depletion is also found to be sensitive to the duration of the disc-locking phase. When the disc lifetime increases, the PMS lithium abundance of a solar-type star decreases owing to the higher efficiency of rotational mixing in the radiative zone. A relationship between the surface rotation and lithium abundance at the end of the PMS is then obtained: slow rotators on the zero-age main sequence are predicted to be more lithium-depleted than fast rotators due to the increase in the disc lifetime.
Aims: The effects of rotation and magnetic fields on the surface abundances of solar-type stars are studied in order to investigate whether the reported difference in lithium content of exoplanet-host stars can be related to their rotational history. Moreover, the asteroseismic properties predicted for stars with and without exoplanets are compared to determine how such a scenario, which relates the lithium abundances and the rotational history of the star, can be further challenged by observations of solar-like oscillations. Methods: Based on observations of rotational periods of solar-type stars, slow rotators on the zero age main sequence (ZAMS) are modelled with a comprehensive treatment of only the shellular rotation, while fast rotators are modelled including both shellular rotation and magnetic fields. Assuming a possible link between low rotation rates on the ZAMS and the presence of planets as a result of a longer disc-locking phase during the pre-main sequence (PMS), we compare the surface abundances and asteroseismic properties of slow and fast rotating models, which correspond to exoplanet-host stars and stars without detected planets, respectively. Results: We confirm previous suggestions that the difference in the lithium content of stars with and without detected planets can be related to their different rotational history. The larger efficiency of rotational mixing predicted in exoplanet-host stars explains their lithium depletion and also leads to changes in the structure and chemical composition of the central stellar layers. Asteroseismic observations can reveal these changes and can help us distinguish between different possible explanations for the lower lithium content of exoplanet-host stars.
The influence of rotational mixing on the evolution and asteroseismic properties of solar-type stars is studied. Rotational mixing changes the global properties of a solar-type star with a significant increase of the effective temperature resulting i n a shift of the evolutionary track to the blue part of the HR diagram. These differences are related to changes of the chemical composition, because rotational mixing counteracts the effects of atomic diffusion leading to larger helium surface abundances for rotating models than for non-rotating ones. Higher values of the large frequency separation are then found for rotating models than for non-rotating ones at the same evolutionary stage, because the increase of the effective temperature leads to a smaller radius and hence to an increase of the stellar mean density. Rotational mixing also has a considerable impact on the structure and chemical composition of the central stellar layers by bringing fresh hydrogen fuel to the core, thereby enhancing the main-sequence lifetime. The increase of the central hydrogen abundance together with the change of the chemical profiles in the central layers result in a significant increase of the values of the small frequency separations and of the ratio of the small to large separations for models including shellular rotation. This increase is clearly seen for models with the same age sharing the same initial parameters except for the inclusion of rotation as well as for models with the same global stellar parameters and in particular the same location in the HR diagram. By computing rotating models of solar-type stars including the effects of a dynamo that possibly occurs in the radiative zone, we find that the efficiency of rotational mixing is strongly reduced when the effects of magnetic fields are taken into account, in contrast to what happens in massive stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا