ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an analysis of high time resolution spectra of the chemically peculiar Ap star HD 213637. The star shows rapid radial velocity variations with a period close to the photometric pulsation period. Radial velocity pulsation amplitudes vary si gnificantly for different rare earth elements. The highest pulsation amplitudes belong to lines of TbIII ~360 m/s, PrII ~250 m/s and PrIII ~230 m/s . We did not detect any pulsations from spectral lines of EuII and in Halpha, in contrast to many other roAp stars. We also did not find radial velocity pulsations using spectral lines of other chemical elements, including Mg, Si, Ca, Sc, Cr, Fe, Ni, Y and Ba. There are phase shifts between the maxima of pulsation amplitudes of different rare earth elements and ions, which is evidence of an outwardly running magneto-acoustic wave propagating through the upper stellar atmosphere.
63 - G. Mathys , S. Hubrig , E. Mason 2011
Hot cluster Horizontal Branch (HB) stars and field subdwarf B (sdB) stars are core helium burning stars that exhibit abundance anomalies that are believed to be due to atomic diffusion. Diffusion can be effective in these stars because they are slowl y rotating. In particular, the slow rotation of the hot HB stars (T_eff > 11000K), which show abundance anomalies, contrasts with the fast rotation of the cool HB stars, where the observed abundances are consistent with those of red giants belonging to the same cluster. The reason why sdB stars and hot HB stars are rotating slowly is unknown. In order to assess the possible role of magnetic fields on abundances and rotation, we investigated the occurrence of such fields in sdB stars with T_eff < 30000K, whose temperatures overlap with those of the hot HB stars. We conclude that large-scale organised magnetic fields of kG order are not generally present in these stars but at the achieved accuracy, the possibility that they have fields of a few hundred Gauss remains open. We report the marginal detection of such a field in SB 290; further observations are needed to confirm it.
111 - S. Hubrig , G. Mathys , D.W. Kurtz 2009
We obtained thirteen spectropolarimetric observations of the strongly magnetic rapidly oscillating Ap star HD154708 over three months with the multi-mode instrument FORS1, installed at the 8-m Kueyen telescope of the VLT. These observations have been used for the determination of the rotation period of P=5.3666+-0.0007d. Using stellar fundamental parameters and the longitudinal magnetic field phase curve, we briefly discuss the magnetic field geometry. The star is observed nearly pole-on and the magnetic field geometry can be described by a centred dipole with a surface polar magnetic field strength B_d between 26.1 and 28.8kG and an inclination of the magnetic axis to the rotation axis in the range 22.5deg to 35.5deg.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا