ﻻ يوجد ملخص باللغة العربية
We obtained thirteen spectropolarimetric observations of the strongly magnetic rapidly oscillating Ap star HD154708 over three months with the multi-mode instrument FORS1, installed at the 8-m Kueyen telescope of the VLT. These observations have been used for the determination of the rotation period of P=5.3666+-0.0007d. Using stellar fundamental parameters and the longitudinal magnetic field phase curve, we briefly discuss the magnetic field geometry. The star is observed nearly pole-on and the magnetic field geometry can be described by a centred dipole with a surface polar magnetic field strength B_d between 26.1 and 28.8kG and an inclination of the magnetic axis to the rotation axis in the range 22.5deg to 35.5deg.
How magnetic fields contribute to the differentiation of the rotation rates of the Ap stars and affect the occurrence of non-radial pulsation in some of them are important open questions. Valuable insight can be gained into these questions by studyin
Context. The Ap stars that rotate extremely slowly, with periods of decades to centuries, represent one of the keys to the understanding of the processes leading to the differentiation of stellar rotation. Aims. We characterise the variations of th
We report the identification of 61.45 d^-1 (711.2 mu Hz) oscillations, with amplitudes of 62.6-mu mag, in KIC 4768731 (HD 225914) using Kepler photometry. This relatively bright (V=9.17) chemically peculiar star with spectral type A5 Vp SrCr(Eu) has
The formation of hot stars out of the cold interstellar medium lies at the heart of astrophysical research. Understanding the importance of magnetic fields during star formation remains a major challenge. With the advent of the Atacama Large Millimet
HD 179949 is an F8V star, orbited by a giant planet at ~8 R* every 3.092514 days. The system was reported to undergo episodes of stellar activity enhancement modulated by the orbital period, interpreted as caused by Star-Planet Interactions (SPIs). O