ترغب بنشر مسار تعليمي؟ اضغط هنا

151 - I. G. Lang , S. T. Pavlov 2010
The light reflectance and absorbance are calculated for a quantum well (QW) the width of which is comparable with the light wave length. The difference of the refraction coefficients of the quantum well and barriers is taken into account. The stimula ting pulse form is arbitrary. An existence of two closely situated discrete excitation energy levels is supposed. Such energy level pare may correspond to two magnetopolaron states in a quantizing magnetic field perpendicular to the QW plane. The relationship of the radiative and non-radiative damping is arbitrary. The final results does not use the approximation of the weak Coulomb interaction of electrons and holes.
77 - G. Lang , H.-J. Grafe , D. Paar 2009
The charge distribution in RFeAsO$_{1-x}$F$_x$ (R=La, Sm) iron pnictides is probed using As nuclear quadrupole resonance. Whereas undoped and optimally-doped or overdoped compounds feature a single charge environment, two charge environments are dete cted in the underdoped region. Spin-lattice relaxation measurements show their coexistence at the nanoscale. Together with the quantitative variations of the spectra with doping, they point to a local electronic order in the iron layers, where low- and high-doping-like regions would coexist. Implications for the interplay of static magnetism and superconductivity are discussed.
We report 139La, 57Fe and 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on powders of the new LaO1-xFxFeAs superconductor for x = 0 and x = 0.1 at temperatures up to 480 K, and compare our measured NQR spec tra with local density approximation (LDA) calculations. For all three nuclei in the x = 0.1 material, it is found that the local Knight shift increases monotonically with an increase in temperature, and scales with the macroscopic susceptibility, suggesting a single magnetic degree of freedom. Surprisingly, the spin lattice relaxation rates for all nuclei also scale with one another, despite the fact that the form factors for each site sample different regions of q-space. This result suggests a lack of any q-space structure in the dynamical spin susceptibility that might be expected in the presence of antiferromagnetic correlations. Rather, our results are more compatible with simple quasi-particle scattering. Furthermore, we find that the increase in the electric field gradient at the As cannot be accounted for by LDA calculations, suggesting that structural changes, in particular the position of the As in the unit cell, dominate the NQR response.
194 - H.-J. Grafe , D. Paar , G. Lang 2008
We have performed 75As Nuclear Magnetic Resonance (NMR) measurements on aligned powders of the new LaO0.9F0.1FeAs superconductor. In the normal state, we find a strong temperature dependence of the spin shift and Korringa behavior of the spin lattice relaxation rate. In the superconducting state, we find evidence for line nodes in the superconducting gap and spin-singlet pairing. Our measurements reveal a strong anisotropy of the spin lattice relaxation rate, which suggest that superconducting vortices contribute to the relaxation rate when the field is parallel to the c-axis but not for the perpendicular direction.
120 - G. Lang , J. Bobroff , H. Alloul 2008
Using 23Na NMR measurements on sodium cobaltates at intermediate dopings (0.44<=x<=0.62), we establish the qualitative change of behavior of the local magnetic susceptibility at x*=0.63-0.65, from a low x Pauli-like regime to the high x Curie-Weiss r egime. For 0.5<=x<=0.62, the presence of a maximum T* in the temperature dependence of the susceptibility shows the existence of an x-dependent energy scale. T_1 relaxation measurements establish the predominantly antiferromagnetic character of spin correlations for x<x*. This contradicts the commonly assumed uncorrelated Pauli behavior in this x range and is at odds with the observed ferromagnetic correlations for x>x*. It is suggested that at a given x the ferromagnetic correlations might dominate the antiferromagnetic ones above T*. From 59Co NMR data, it is shown that moving towards higher x away from x=0.5 results in the progressive appearance of nonmagnetic Co3+ sites, breaking the homogeneity of Co states encountered for x<=0.5. The main features of the NMR-detected 59Co quadrupolar effects, together with indications from the powder x-ray diffraction data, lead us to sketch a possible structural origin for the Co3+ sites. In light of this ensemble of new experimental observations, a new phase diagram is proposed, taking into account the systematic presence of correlations and their x-dependence.
Reflectance, transmittance and absorbance of a symmetric light pulse, the carrying frequency of which is close to the frequency of interband transitions in a quantum well, are calculated. Energy levels of the quantum well are assumed discrete, and tw o closely located excited levels are taken into account. The theory is applicable for the quantum wells of arbitrary widths when the size quantization is preserved. A distinction of refraction indices of barriers and quantum well is taken into account. In such a case, some additional reflection from the quantum well borders appears which changes essentially a shape of the reflected pulse in comparison to homogeneous medium. The reflection from the borders disappears at some definite ratios of the carrying frequency of the stimulating pulse and quantum well width.
221 - J. Bobroff , S. Hebert , G. Lang 2007
We present a comparative study of CoO2 layers in the Bi-misfit and NaxCoO2 cobaltates. Co NMR measures the intrinsic susceptibility of the Co layers and is not affected by spurious contributions. At low dopings where room-temperature thermopower (TEP ) is large, Curie-Weiss susceptibilities are observed in both materials. But NMR and muSR experiments find neither charge nor spin order down to low temperatures in Bi-misfit, in contrast to the case of NaxCoO2. This demonstrates that metallicity, charge and magnetic orders are specific of the Na layers in NaxCoO2 whereas strong correlations are generic of the cobaltates physics and could explain the large TEP.
Reflectance, transmittance and absorbance of a symmetric light pulse, the carrying frequency of which is close to the frequency of interband transitions in a quantum well, are calculated. Energy levels of the quantum well are assumed discrete, and tw o closely located excited levels are taken into account. A wide quantum well (the width of which is comparable to the length of the light wave, corresponding to the pulse carrying frequency) is considered, and the dependance of the interband matrix element of the momentum operator on the light wave vector is taken into account. Refractive indices of barriers and quantum well are assumed equal each other. The problem is solved for an arbitrary ratio of radiative and nonradiative lifetimes of electronic excitations. It is shown that the spatial dispersion essentially affects the shapes of reflected and transmitted pulses. The largest changes occur when the radiative broadening is close to the difference of frequencies of interband transitions taken into account.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا